
A Graphical Tool for Model-Driven Development
Using Components and Services

Simone Di Cola, Cuong Tran, Kung-Kiu Lau
School of Computer Science, The University of Manchester

Manchester M13 9PL, United Kingdom
Email: dicolas,ctran,kung-kiu@cs.manchester.ac.uk

Abstract—Combining model-driven engineering with compo-
nent-based and service-oriented approaches can potentially reap
the benefits of all three approaches. In this paper we present a
tool that combines these approaches. We show the key aspects of
the tool and demonstrate its use with a simple example.

I. INTRODUCTION

Model-driven Engineering (MDE) [6] is fast becoming
the standard methodology for software system development
[9]. The provision of tool support for MDE is also gather-
ing pace, nowhere more so than in the Eclipse framework
[7]. At the same time, component-based and service-oriented
approaches (SOA) are gaining in popularity because they
offer other sought-after benefits, namely high modularity and
low coupling, as well as the potential to tackle scalability
and complexity. Component-based approaches with properly
defined underlying component models [5] are by definition
model-driven.

In this paper we present a graphical MDE tool for system
development that is based on a component model. In this
component model, services are provided by components, and
are composed when their provider components are composed.
Our tool thus reaps the benefits offered by MDE, component-
based and service-oriented development [1].

II. TOOL OVERVIEW

Our tool supports component-based system development
and its associated life cycle [3]. The latter consists of: (i) a
component development phase; and (ii) a system development
phase. In (i) components are designed and built, and deposited
in a repository. In (ii) components are retrieved and deployed
into the system under construction. Figs. 1 and 2 show our
Eclipse workbench for (i) and (ii) respectively. For each
development phase, the tool provides a canvas as a design
space, as well as a palette of pre-defined building blocks. The
tool provides continuous validation. Errors are marked in the
canvas, and listed in the problems view. The tool generates
code for the resulting system that can be deployed as a stand-
alone application.

III. TOOL IMPLEMENTATION

The tool is implemented using a powerful stack of model
driven technologies like Eclipse Modelling Framework (EMF)
[7], Graphiti1, and CDO2. In this section we briefly describe
the main elements of the implementation.

1https://www.eclipse.org/graphiti/
2https://eclipse.org/cdo/

Our approach is based on an extended version of the X-
MAN component model [2]. It consists of three main entities,
namely components, connectors, and services.

1) Components: X-MAN has two types of components:
atomic, and composite. They are both fully encapsulated, i.e.
they have no external functional dependencies and contain only
provided services. An atomic component is a unit of compu-
tation. Its computation unit (CU) contains the implementation
of the services it exposes. As shown in Fig. 1, according to
the dragged service(s), the tool generates an interface, and an
empty implementation. A composite component is constructed
by composing pre-defined components via composition con-
nectors.

2) Connectors: Composition connectors are (exogenous)
control structures that coordinate the execution of the com-
ponents they compose [4]. They are Sequencer and Selector,
which provide sequencing, and branching respectively. In
Fig. 2 a sequencer is shaped as an ellipse, and a selector as a
rhombus. In addition, unary adapter connectors such as Guard,
and Loop provide gating, and looping respectively. In Fig. 2 a
loop is shaped as a circle, and a guard as a triangle.

While connectors control execution among component in-
stances, data between components flows through data channels
(dotted arrow in Fig. 2).

3) Services: A service represents an operation exposed
by a component. It contains two main entities: parameters,
and service references. Parameters are inputs and outputs,
while service references specify services in sub-components
that contribute to the provided operation. In Fig. 2, a service
reference is represented as a square.

Starting from the EMF meta-model, the graphical editor
has been implemented using Graphiti, while the model repos-
itory is realised using CDO. Finally, we have used Xtend3 to
generate code for a valid system.

IV. DISCUSSION AND CONCLUSION

In object-based component models (e.g. EJB) and frame-
works (e.g. OSGi), services are visible at model level, but
service composition is only visible at code level. Here, services
are methods provided by objects, and components (objects) are
composed by method calls.

In ADL-based approaches (e.g. UML 2), both services
and service composition are visible at model level, but

3https://eclipse.org/xtend/



Fig. 1: Eclipse workbench for component development.

Fig. 2: Eclipse workbench for system development.

service composition is different from SOA approaches, i.e.
composition is port connection rather than orchestrated.

Our approach is closer to SOA as services and service
composition are visible at model level. As in web services,
we use coordination for service composition. However,
whilst web services use workflow languages like BPEL and
BPMN [8], we define composition in the meta-model itself as
composition (and adaptor) connectors.

REFERENCES

[1] T. Erl. Soa: principles of service design, volume 1. Prentice Hall Upper
Saddle River, 2008.

[2] N. He, et al. Component-based design and verification in X-MAN. In
Proc. ERTS, 2012.

[3] K.-K. Lau, et al. Towards composing software components in both design
and deployment phases. In Proc. 10th CBSE, pages 274–282. Springer-
Verlag, 2007.

[4] K.-K. Lau, et al. Composing components in design phase using exoge-
nous connectors. In Proc. 32nd SEAA, pages 12–19. IEEE Computer
Society Press, 2006.

[5] K.-K. Lau. Software Component Models: Past, Present and Future. In
Proc. 17th CBSE, pages 185–186. ACM, 2014.

[6] D. C. Schmidt. Model-driven engineering. IEEE Computer, 39, February
2006.

[7] D. Steinberg, et al. EMF: Eclipse Modeling Framework. Addison-Wesley,
Boston, MA, 2. edition, 2009.

[8] S. Weerawarana, et al. Web services platform architecture: SOAP, WSDL,
WS-policy, WS-addressing, and more. Prentice Hall PTR, 2005.

[9] J. Whittle, et. al. The state of practice in model-driven engineering.
Software, IEEE, 31(3):79–85, 2014.


