
An MDE Tool for Defining Software Product Families with
Explicit Variation Points

Simone Di Cola, Kung-Kiu Lau, Cuong Tran, and Chen Qian
School of Computer Science
The University of Manchester

Oxford Road, M13 9PL, United Kingdom
dicolas,kung-kiu,ctran,cq@cs.man.ac.uk

ABSTRACT
Current software product line engineering tools mainly fo-
cus on variability in the problem space, and create product
families by linking variability models to artefacts in the so-
lution space. In this paper, we present a tool that can be
used to define software architectures with explicit variation
points, and hence product families, directly in the solution
space.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.11 [Software Engineering]: Software Archi-
tectures

Keywords
PLE tools, architecture variability, component-based soft-
ware development

1. INTRODUCTION
Product line engineering tools, e.g. pure::variants,1 Gears,2

and COVAMOF [8], mainly focus on modelling variability
in the problem space, and create product families by linking
variability models to artfacts such as a code base in the
solution space [7].

By contrast, software architecture based approaches [1] cre-
ate products directly in the solution space. However most
of these approaches do not define variability explicitly [4],
making it difficult to relate solutions to the problem space.
In this paper we present a tool that can be used to de-
fine software architectures with explicit variation points, and
hence product families. We briefly explain our approach and
demonstrate the tool on an example.

2. TOOL OVERVIEW
Our tool supports the construction of a product family us-
ing a feature-oriented approach, as illustrated by Figure 1.

1http://www.pure-systems.com/
2http://www.biglever.com/

Our approach consists of three main stages: (i) build com-

F4 F5 F8 F9F6 F7

opt opt

Connector

F4 F5

alt

F8 F9F6,F7

F2F1

opt

F3

F1
F1'

F0

Variation operator

F0

F1

F5

F2

F4

F3

Mandatory
Optional
Alternative

F7F6 F9F8

(a) Feature model (b) Product family

Component

Figure 1: Our approach.

ponents (atomic or composite) to model the leaf features
(F4-F9) in the feature model, and compose them to model
parent features wherever appropriate (F6 and F7 are com-
posed into F2); (ii) apply variation operators to the set
of components built in (i), according to the variation points
in the feature model (OPT(F4), OPT(F5), ALT(F8, F9)), and
repeat this for nested variation points (2 times for F1); (iii)
apply family connectors to component sets from (i), (ii)
and (iii) to produce one family (F0).

For each stage, the tool provides a canvas as a design space,
as well as a palette of pre-defined design blocks. The tool
also performs continuous validation. Errors appear as cross
markers attached to erroneous entities and detailed in the
Problems view. Figures 2, 3 and 5 illustrate our workbench
for the three stages.

3. TOOL IMPLEMENTATION
Our tool is implemented using a robust stack of model-
driven technologies like Eclipse Modelling Framework [9],
Graphiti,3 and CDO.4

Our approach is based on a component model called FX-
MAN, which is in turn based on the X-MAN component
model [6] and tool. X-MAN architectures have no variabil-
ity, so in FX-MAN we addded: (i) variation operators that
generate variants of a set of X-MAN architectures, which we
call an X-MAN set ; and (ii) family connectors that compose
multiple X-MAN sets into a product family.

3https://eclipse.org/graphiti/
4https://eclipse.org/cdo/



Figure 2: Eclipse workbench for atomic component development.

3.1 Component Development
X-MAN components can be atomic and composite. An atomic
component is a unit of computation. Its computation unit
(CU) contains the implementation of the component. An
atomic component has a number of provided services imple-
mented by the CU. Figure 2 depicts the design of an atomic
component. To define a service we drag onto the canvas a
service from the palette and then add inputs and outputs;
then we can generate an implementation template for the
CU and implement the specified service. Continuous valida-
tion will ensure that the final component is well-formed.

Components are deposited in a standalone or collaborative
repository. In our tool, a repository is displayed in the
Repository Explorer view, at the bottom of Figures 2 and 3.

A composite component is constructed by composing pre-
constructed components (from the repository) by means of
pre-defined composition connectors and adapters. These are
(exogenous) control structures that coordinate the execution
of their composed components. Our composition connectors
are Sequencer and Selector. They provide sequencing and
branching respectively. Adapters are Guard and Loop, al-
lowing gating and looping respectively. A composite com-
ponent, just as an atomic one, provides services; they result
from the coordination of the services provided by its sub-
components. In addition to composition connectors, X-MAN
also defines an Aggregator connector, which aggregates in a
new composite component the services exposed by its sub-
components. An aggregated component effectively provides
a façade to the aggregated services.

Figure 3 illustrates the design of a composite component

called AutoCruiseControl. Two components, AdaptSpeed

and CruiseControl, are retrieved from the repository and
composed using a Sequencer and a Guard. Sequencing order,
and gating conditions are specified as labels on coordination
connections. The composition results in the AutoCruiseC-
ontrol provided service.

In addition to control, data flow can also be specified in
the design via data channels. Data can flow ‘horizontally’
between components and ‘vertically’ to the composite com-
ponent services.

The result from component development is a repository of X-
MAN components, which are also architectures themselves.

3.2 Variability
To model variability, in FX-MAN, we have defined three ex-
plicit variation operators: Or, Alternative and Opt. They
define the standard ‘inclusive or’, ‘exclusive or’, and ‘op-
tional’ variation points in feature models. Variation oper-
ators can be applied to X-MAN sets to generate variations.
They can be nested within one another, as in feature models.

In our tool, variation operators can be dragged from the
palette (Figure 5), and connected to component (in X-MAN
sets) or to other variation operators. Figure 5 shows two
Alternative and two Optional operators connected to four
X-MAN component.5 It also shows an Or operator nested
within an Alternative operator.

5The family connectors and adapters specify coordination
and adaptation applied to all variations.



Figure 3: Eclipse workbench for composite component development.

Variation generation results in sets of X-MAN architectures.

3.3 Composing Architectures into a Family
Family connectors compose X-MAN sets into a product fam-
ily, which is an architecture containing the architectures of
all the members. A product family can be adapted by a
family adapter.

Family connectors and adapters are implemented in a palette
in our tool as shown in Figure 5. To apply a family connector
we drag it onto the canvas and make connections from it to
X-MAN components (in X-MAN sets) or variation operators.
In Figure 5, the F-Selector composes three sets of variations
produced by the two Optional and the Alternative varia-
tion operators into a single architecture. An F-Sequencer
composes the previous architecture with another set of vari-
ations created by the variation operator Or to yield a larger
architecture. Finally, a F-Loop is connected at the top.

The constructed product family can be explored via the
Product Explorer view (bottom, Figure 5). Architectures of
individual members can be directly extracted and executed.

4. EXAMPLE
Consider vehicle control systems (VCS), adapted from [5],
with the feature model in Figure 4.

First, we develop seven X-MAN atomic components (corre-
sponding to seven leaf features): AverageMPH, AverageMPG,
Maintenance, Monitoring, FrontDetection, AllRoundDe-

tection, AdaptSpeed and CruiseControl. They are stored
in the repository. The last two are then retrieved and com-
posed into the composite component AutoCruiseControl in

VCS

Calculation

Mandatory Optional
Alternative

Observation Cruise Management

Average Maintenance Monitoring Collision Auto Cruise

Front All-round 
Or

Detection ControlMPH
Average

MPG

DetectionDetection 

Figure 4: Feature model of VCS.

Figure 3.

Second, we apply variation operators defined in the feature
model to the X-MAN components that have been constructed
to implement the leaf features. To this end, we retrieve the
components and apply the specified variation operators to
them. In Figure 5, we apply Optional to AverageMPH and
AverageMPG; Alternative to Maintenance and Monitoring,
and FrontDetection and AllRoundDetection; and Or to
the latter and AutoCruiseControl.

Third, we compose all the above variations into all the pos-
sible products specified by the feature model. We use F-
Sequencer, F-Selector and F-Loop, also shown in Figure 5.
The resulting architecture contains a total of 40 products,
which can be inspected, and extracted using the Product
Explorer view in Fig. 5.

5. DISCUSSION AND CONCLUSION
Current product line engineering tools are mostly problem
space based (see [2] for a survey). For example, in pure::vari-
ants, a family model is defined to establish links between
features in the feature model (problem space) and available
assets, i.e. code and documentation (solution space). By



Figure 5: Eclipse workbench for constructing architecture with variability.

contrast, our approach is solution space based. By having a
full set of explicit variation points (including the ‘inclusive
or’) in our architectures, we can map our product families
to the problem space. This is in contrast to most software
architecture based approaches, which are also solution space
based but do not define architectures with a full set of ex-
plicit variation points.

However, currently our tool lacks an interface to the problem
space, i.e. it does not support the end user in the process of
features (or product) selection. In this regard, we intend to
integrate our tool with pure::variants. This will allow us to
extract specific products, thus tackling potential scalability
problems when dealing with large product families.

At the moment, our tool also does not handle constraints
between features in the problem space; rather, we define
them as filters on product families in the solution space. We
plan to investigate with a real example how efficient these
filters are, and whether/how they could deal with constraints
in the problem space.

Furthermore, our approach only deals with structural vari-
ability, but not parametric variability [3] . Future work will
therefore include an investigation of the latter.

Finally our tool is available at http://xmantoolset.ddns.

net.

6. REFERENCES
[1] L. Bass, P. Clements, and R. Kazman. Software

Architecture in Practice. SEI Series in Software
Engineering. Addison-Wesley, third edition, 2012.

[2] T. Berger, R. Rublack, D. Nair, J. M Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of variability
modeling in industrial practice. In Proc. of 7th VaMoS,
page 7. ACM, 2013.

[3] Jeffrey B Dahmus, Javier P Gonzalez-Zugasti, and
Kevin N Otto. Modular product architecture. Design
studies, 22:409–424, 2001.

[4] M. Galster, P. Avgeriou, D. Weyns, and T. Männistö.
Variability in software architecture: current practice
and challenges. ACM SIGSOFT Software Engineering
Notes, 36(5):30–32, 2011.

[5] D. Hatley and I. Pirbhai. Strategies for real-time system
specification. Addison-Wesley, 2013.

[6] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel,
C. Tran, P. Rümmer, and S. Sharma. Component-based
design and verification in X-MAN. In Proc. Embedded
Real Time Software and Systems, 2012.

[7] M. Schulze and R. Hellebrand. Variability exchange
format a generic exchange format for variability data.
In Proc. of SE-WS’15, volume 1337. CEUR-WS.org,
2015.

[8] M. Sinnema, O. De Graaf, and J. Bosch. Tool support
for COVAMOF. In Workshop on Software Variability
Management for Product Derivation, 2004.

[9] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF: Eclipse Modeling Framework.
Pearson Education, 2008.



APPENDIX
A. DEMONSTRATION ROADMAP
The tool demonstration begins with a quick overview of the
theoretical foundations for our tool, and is followed by a
demonstration of the steps described in Section 3, illustrated
by the VCS example in Section 4. Each step is illustrated
through small working examples. Tool executables and ex-
amples source code will be provided to participants who wish
to have a first-hand experience.

Step 1: Construct X-MAN components
The first step is to construct X-MAN components, atomic
or composite, that implement the leaf features in the feature
model. Once implemented, they are deposited in a shared
repository (accessible by the participants). There are seven
leaf features, so we will construct seven X-MAN compo-
nents: AverageMPH, AverageMPG, Maintenance, Monitoring,
FrontDetection, AllRoundDetection, and AutoCruiseCon-

trol. As already stated in Section 4, all the components are
atomic, except AutoCruiseControl, which is a composite
of two atomic components AdaptSpeed and CruiseControl.
We demonstrate how the tool supports their implementa-
tion, and how they can be composed into the AutoCruiseC-

ontrol component. Moreover, we demonstrate how the tool
allows us to generate code for the AutoCruiseControl com-
ponent, and how to verify its behaviour via JUnit tests.

Step 2: Apply variation operators
The second step is to apply variation operators defined in the
feature model to the constructed X-MAN components. To
this end, we retrieve all the seven components from CDO us-
ing the dialogue in Fig. 6, and apply the variation operators
according to the feature model in Fig. 4. The Optional oper-

Figure 6: Dialogue for retrieving components.

ators applied to AverageMPH and AverageMPG yield the tuple
F1 = 〈{AverageMPH},∅〉 and F2 = 〈{AverageMPG},∅〉 re-
spectively. The Alternative operator applied to Maintenance

and Monitoring gives the set F3 = 〈{Maintenance},{Monit-
oring}〉. The Or operator applied to the X-MAN set con-
sisting of AutoCruiseControl and the X-MAN set resulting
from applying the Alternative operator to FrontDetection

and AllRoundDetection yields the X-MAN set of 5 products:
F4 = 〈{AutoCruiseControl, AllRoundDetection}, {All-

RoundDetection}, {FrontDetection, AutoCruiseControl},

{FrontDetection}, {AutoCruiseControl}〉.

Figure 7: Product extraction interface.

By means of the Product Explorer view, we demonstrate
how each variation operator realises the variability just de-
scribed, and how they can be nested in order to create com-
plex variations of X-MAN sets.

Step 3: Construct the product family
After generating variations, a tuple of X-MAN sets are com-
posed via family connectors into a product family. We demon-
strate how to create the 40 products defined by the VCS
feature model. We choose to compose F1, F2, F3 into F5
with the family connector F-Selector because we want to
allow a driver to choose any subset of the features: Av-
erageMPH, AvergageMPG, Maintenance and Monitoring.
Then we choose to compose F5 and F4 with F-sequencer
to combine the driver’s choice with the Cruise Management
feature.

Step 4: Extract family members
All the 40 products can be extracted using the product ex-
traction dialogue box in Fig. 7. The (partial) result is de-
picted in Fig. 8

Figure 8: Extracted product in project explorer.

We extract product No. 4 (Fig. 9), which is a premium ver-
sion of VCS, has five components: AverageMPH, AverageMPG,
Monitoring, AutoCruiseControl, and AllRoundDetection.
The premium VCS is capable of displaying the result calcu-
lated by AverageMPH, AverageMPG, or Monitoring (chosen by
the user). Then AutoCruiseControl is invoked with the aim
of maintaining the speed (selected by the user). Finally, the
system shows the distance from the vehicle to the nearest
obstacle in a specified direction.

Step 5: Test family members
Because all the products in the family are fully formed and
executable, we check their behaviour with JUnit tests. This
is an advantage in practical development. We demonstrate
this by testing the behaviour of the extracted product No.
4 (Fig. 10). This concludes the demonstration.



Figure 9: Product No.4

Figure 10: Product No.4 tests result.


