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Introduction
Integrals involving trigonometric functions are commonplace in engineering mathematics. This is
especially true when modelling waves and alternating current circuits. When the root-mean-square
(rms) value of a waveform, or signal is to be calculated, you will often find this results in an integral
of the form∫

sin2 t dt

In this Section you will learn how such integrals can be evaluated.
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Prerequisites
Before starting this Section you should . . .

• be able to find a number of simple definite
and indefinite integrals

• be able to use a table of integrals

• be familiar with standard trigonometric
identities�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use trigonometric identities to write
integrands in alternative forms to enable
them to be integrated
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1. Integration of trigonometric functions
Simple integrals involving trigonometric functions have already been dealt with in Section 13.1. See
what you can remember:

Task

Write down the following integrals:

(a)

∫
sin x dx, (b)

∫
cos x dx, (c)

∫
sin 2x dx, (d)

∫
cos 2x dx

Your solution

(a) (b)

(c) (d)

Answer

(a) − cos x + c, (b) sin x + c, (c) −1

2
cos 2x + c, (d)

1

2
sin 2x + c.

The basic rules from which these results can be derived are summarised here:

Key Point 8∫
sin kx dx = −cos kx

k
+ c

∫
cos kx dx =

sin kx

k
+ c

In engineering applications it is often necessary to integrate functions involving powers of the trigono-
metric functions such as∫

sin2 x dx or

∫
cos2 ωt dt

Note that these integrals cannot be obtained directly from the formulas in Key Point 8 above.
However, by making use of trigonometric identities, the integrands can be re-written in an alternative
form. It is often not clear which identities are useful and each case needs to be considered individually.
Experience and practice are essential. Work through the following Task.
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Task

Use the trigonometric identity sin2 θ ≡ 1

2
(1 − cos 2θ) to express the integral∫

sin2 x dx in an alternative form and hence evaluate it.

(a) First use the identity:

Your solution∫
sin2 x dx =

∫
Answer

The integral can be written

∫
1

2
(1− cos 2x)dx.

Note that the trigonometric identity is used to convert a power of sin x into a function involving
cos 2x which can be integrated directly using Key Point 8.

(b) Now evaluate the integral:

Your solution

Answer
1
2

(
x− 1

2
sin 2x + c

)
= 1

2
x− 1

4
sin 2x + K where K = c/2.

Task

Use the trigonometric identity sin 2x ≡ 2 sin x cos x to find

∫
sin x cos x dx

(a) First use the identity:

Your solution∫
sin x cos x dx =

∫
Answer

The integrand can be written as 1
2
sin 2x

(b) Now evaluate the integral:

Your solution

Answer∫ 2π

0

sin x cos x dx =

∫ 2π

0

1

2
sin 2x dx =

[
−1

4
cos 2x + c

]2π

0

= −1

4
cos 4π +

1

4
cos 0 = −1

4
+

1

4
= 0

This result is one example of what are called orthogonality relations.
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Engineering Example 3

Magnetic flux

Introduction

The magnitude of the magnetic flux density on the axis of a solenoid, as in Figure 13, can be found
by the integral:

B =

∫ β2

β1

µ0nI

2
sin β dβ

where µ0 is the permeability of free space (≈ 4π × 10−7 H m−1), n is the number of turns and I is
the current.

β1
β2

Figure 13: A solenoid and angles defining its extent

Problem in words

Predict the magnetic flux in the middle of a long solenoid.

Mathematical statement of the problem

We assume that the solenoid is so long that β1 ≈ 0 and β2 ≈ π so that

B =

∫ β2

β1

µ0nI

2
sin β dβ ≈

∫ π

0

µ0nI

2
sin β dβ

Mathematical analysis

The factor
µ0nI

2
can be taken outside the integral i.e.

B =
µ0nI

2

∫ π

0

sin β dβ =
µ0nI

2

[
− cos β

]π

0

=
µ0nI

2
(− cos π + cos 0)

=
µ0nI

2
(−(−1) + 1) = µ0nI

Interpretation

The magnitude of the magnetic flux density at the midpoint of the axis of a long solenoid is predicted
to be approximately µ0nI i.e. proportional to the number of turns and proportional to the current
flowing in the solenoid.
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2. Orthogonality relations
In general two functions f(x), g(x) are said to be orthogonal to each other over an interval a ≤ x ≤ b
if ∫ b

a

f(x)g(x) dx = 0

It follows from the previous Task that sin x and cos x are orthogonal to each other over the interval
0 ≤ x ≤ 2π. This is also true over any interval α ≤ x ≤ α + 2π (e.g. π/2 ≤ x ≤ 5π, or
−π ≤ x ≤ π).

More generally there is a whole set of orthogonality relations involving these trigonometric functions
on intervals of length 2π (i.e. over one period of both sin x and cos x). These relations are useful
in connection with a widely used technique in engineering, known as Fourier analysis where we
represent periodic functions in terms of an infinite series of sines and cosines called a Fourier series.
(This subject is covered in 23.)

We shall demonstrate the orthogonality property

Imn =

∫ 2π

0

sin mx sin nx dx = 0

where m and n are integers such that m 6= n.

The secret is to use a trigonometric identity to convert the integrand into a form that can be readily
integrated.

You may recall the identity

sin A sin B ≡ 1

2
(cos(A−B)− cos(A + B))

It follows, putting A = mx and B = nx that provided m 6= n

Imn =
1

2

∫ 2π

0

[cos(m− n)x− cos(m + n)x] dx

=
1

2

[
sin(m− n)x

(m− n)
− sin(m + n)x

(m + n)

]2π

0

= 0

because (m− n) and (m + n) will be integers and sin(integer×2π) = 0. Of course sin 0 = 0.

Why does the case m = n have to be excluded from the analysis? (left to the reader to figure out!)

The corresponding orthogonality relation for cosines

Jmn =

∫ 2π

0

cos mx cos nx dx = 0

follows by use of a similar identity to that just used. Here again m and n are integers such that
m 6= n.
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Example 23
Use the identity sin A cos B ≡ 1

2
(sin(A + B) + sin(A−B)) to show that

Kmn =

∫ 2π

0

sin mx cos nx dx = 0 m and n integers, m 6= n.

Solution

Kmn =
1

2

∫ 2π

0

[sin(m + n)x + sin(m− n)x] dx

=
1

2

[
−cos(m + n)x

(m + n)
− cos(m− n)x

(m− n)

]2π

0

= −1

2

[
cos(m + n)2π − 1

(m + n)
+

cos(m− n)2π − 1

(m− n)

]
= 0

(recalling that cos(integer× 2π) = 1)

Task

Derive the orthogonality relation

Kmn =

∫ 2π

0

sin mx cos nx dx = 0 m and n integers, m = n

Hint: You will need to use a different trigonometric identity to that used in Example
23.

Your solution
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Answer

Kmn =

∫ 2π

0

sin mx cos mx dx

Putting m = n 6= 0, and then using the identity sin 2A ≡ 2 sin A cos A we get

Kmm =

∫ 2π

0

sin mx cos mx dx

=
1

2

∫ 2π

0

sin 2mx dx

=
1

2

[
−cos 2mx

2m

]2π

0

= − 1

4m
(cos 4mπ − cos 0) = − 1

4m
(1− 1) = 0

Putting m = n = 0 gives K00 =
1

2

∫ 2π

0

sin 0 cos 0 dx = 0.

Note that the particular case m = n = 1 was considered earlier in this Section.

3. Reduction formulae
You have seen earlier in this Workbook how to integrate sin x and sin2 x (which is (sin x)2). Appli-
cations sometimes arise which involve integrating higher powers of sin x or cos x. It is possible, as
we now show, to obtain a reduction formula to aid in this Task.

Task

Given In =

∫
sinn(x) dx write down the integrals represented by I2, I3, I10

Your solution

I2 = I3 = I10 =

Answer

I2 =

∫
sin2 x dx I3 =

∫
sin3 x dx I10 =

∫
sin10 x dx

To obtain a reduction formula for In we write

sinn x = sinn−1(x) sin x

and use integration by parts.
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Task

In the notation used earlier in this Workbook for integration by parts (Key Point

5, page 31) put f = sinn−1 x and g = sin x and evaluate
df

dx
and

∫
g dx.

Your solution

Answer
df

dx
= (n− 1) sinn−2x cos x (using the chain rule of differentiation),∫

g dx =

∫
sin x dx = − cos x

Now use the integration by parts formula on

∫
sinn−1 x sin x dx. [Do not attempt to evaluate the

second integral that you obtain.]

Your solution

Answer ∫
sinn−1 x sin x dx = sinn−1(x)

∫
g dx−

∫
df

dx

∫
g dx

= sinn−1(x)(− cos x) + (n− 1)

∫
sinn−2 x cos2 x dx

We now need to evaluate

∫
sinn−2 x cos2 xdx. Putting cos2 x = 1− sin2 x this integral becomes:∫

sinn−2(x) dx−
∫

sinn(x) dx

But this is expressible as In−2 − In so finally, using this and the result from the last Task we have

In =

∫
sinn−1(x) sin x dx = sinn−1(x)(− cos x) + (n− 1)(In−2 − In)

from which we get Key Point 9:
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Key Point 9

Reduction Formula

Given In =

∫
sinn xdx

In = − 1

n
sinn−1(x) cos x +

n− 1

n
In−2

This is our reduction formula for In. It enables us, for example, to evaluate I6 in terms of I4, then
I4 in terms of I2 and I2 in terms of I0 where

I0 =

∫
sin0 x dx =

∫
1 dx = x.

Task

Use the reduction formula in Key Point 9 with n = 2 to find I2.

Your solution

Answer

I2 = −1

2
[sin x cos x] +

1

2
I0

= −1

2
[
1

2
sin 2x] +

x

2
+ c

i.e.

∫
sin2 x dx = −1

4
sin 2x +

x

2
+ c

as obtained earlier by a different technique.
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Task

Use the reduction formula in Key Point 9 to obtain I6 =

∫
sin6 x dx.

Firstly obtain I6 in terms of I4, then I4 in terms of I2:

Your solution

Answer

Using Key Point 9 with n = 6 gives I6 = −1

6
sin5 x cos x +

5

6
I4.

Then, using Key Point 9 again with n = 4, gives I4 = −1

4
sin3 x cos x +

3

4
I2

Now substitute for I2 from the previous Task to obtain I4 and hence I6.

Your solution

Answer

I4 = −1

4
sin3 x cos x− 3

16
sin 2x +

3

8
x+ constant

∴ I6 = −1

6
sin5 x cos x− 5

24
sin3 x cos x− 5

32
sin 2x +

5

16
x + constant

Definite integrals can also be readily evaluated using the reduction formula in Key Point 9. For
example,

In =

∫ π/2

0

sinn x dx so In−2 =

∫ π/2

0

sinn−2 x dx

We obtain, immediately

In =
1

n

[
− sinn−1(x) cos x

]π/2

0

+
n− 1

n
In−2

or, since cos
π

2
= sin 0 = 0, In =

(n− 1)

n
In−2

This simple easy-to-use formula is well known and is called Wallis’ formula.
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Key Point 10

Reduction Formula - Wallis’ Formula

Given In =

∫ π/2

0

sinn x dx or In =

∫ π/2

0

cosn x dx

In =
(n− 1)

n
In−2

Task

If In =

∫ π/2

0

sinn x dx calculate I1 and then use Wallis’ formula, without further

integration, to obtain I3 and I5.

Your solution

Answer

I1 =

∫ π/2

0

sin x dx =

[
− cos x

]π/2

0

= 1

Then using Wallis’ formula with n = 3 and n = 5 respectively

I3 =

∫ π/2

0

sin3 x dx =
2

3
I1 =

2

3
× 1 =

2

3

I5 =

∫ π/2

0

sin5 x dx =
4

5
I3 =

4

5
× 2

3
=

8

15
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Task

The total power P of an antenna is given by

P =

∫ π

0

ηL2I2π

4λ2
sin3 θ dθ

where η, λ, I are constants as is the length L of antenna. Using the reduction

formula for

∫
sinn x dx in Key Point 9, obtain P .

Your solution

Answer
Ignoring the constants for the moment, consider

I3 =

∫ π

0

sin3 θ dθ which we will reduce to I1 and evaluate.

I1 =

∫ π

0

sin θ dθ =

[
− cos θ

]π

0

= 2

so by the reduction formula with n = 3

I3 =
1

3

[
− sin2 x cos x

]π

0

+
2

3
I1 = 0 +

2

3
× 2 =

4

3

We now consider the actual integral with all the constants.

Hence P =
ηL2I2π

4λ2

∫ π

0

sin3 θ dθ =
ηL2I2π

4λ2
× 4

3
, so P = η

L2I2π

3λ2
.

A similar reduction formula to that in Key Point 9 can be obtained for

∫
cosn x dx (see Exercise 5

at the end of this Workbook). In particular if

Jn =

∫ π/2

0

cosn x dx then Jn =
(n− 1)

n
Jn−2

i.e. Wallis’ formula is the same for cosn x as for sinn x.

HELM (2008):
Section 13.6: Integration of Trigonometric Functions

59



4. Harder trigonometric integrals

The following seemingly innocent integrals are examples, important in engineering, of trigonometric
integrals that cannot be evaluated as indefinite integrals:

(a)

∫
sin(x2) dx and

∫
cos(x2) dx These are called Fresnel integrals.

(b)

∫
sin x

x
dx This is called the Sine integral.

Definite integrals of this type, which are what normally arise in applications, have to be evaluated
by approximate numerical methods.

Fresnel integrals with limits arise in wave and antenna theory and the Sine integral with limits in
filter theory.

It is useful sometimes to be able to visualize the definite integral. For example consider

F (t) =

∫ t

0

sin x

x
dx t > 0

Clearly, F (0) =

∫ 0

0

sin x

x
dx = 0. Recall the graph of

sin x

x
against x, x > 0:

π 2π

sin x

x

xt

Figure 14

For any positive value of t, F (t) is the shaded area shown (the area interpretation of a definite integral
was covered earlier in this Workbook). As t increases from 0 to π, it follows that F (t) increases from
0 to a maximum value

F (π) =

∫ π

0

sin x

x
dx

whose value could be determined numerically (it is actually about 1.85). As t further increases from

π to 2π the value of F (t) will decrease to a local minimum at 2π because the
sin x

x
curve is below

the x-axis between π and 2π. Note that the area below the curve is considered to be negative in
this application.

Continuing to argue in this way we can obtain the shape of the F (t) graph in Figure 15: (can you
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see why the oscillations decrease in amplitude?)

π 2π t

F (t)

1.85

π

2

Figure 15

The result

∫ ∞

0

sin x

x
dx =

π

2
is clearly illustrated in the graph (you are not expected to know

how this result is obtained). Methods for solving such problems are dealt with in 31.
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Exercises

You will need to refer to a Table of Trigonometric Identities to answer these questions.

1. Find (a)

∫
cos2 xdx (b)

∫ π/2

0

cos2 tdt (c)

∫
(cos2 θ + sin2 θ)dθ

2. Use the identity sin(A + B) + sin(A−B) ≡ 2 sin A cos B to find

∫
sin 3x cos 2xdx

3. Find

∫
(1 + tan2 x)dx.

4. The mean square value of a function f(t) over the interval t = a to t = b is defined to be

1

b− a

∫ b

a

(f(t))2dt

Find the mean square value of f(t) = sin t over the interval t = 0 to t = 2π.

5. (a) Show that the reduction formula for Jn =

∫
cosn x dx is

Jn =
1

n
cosn−1(x) sin x +

(n− 1)

n
Jn−2

(b) Using the reduction formula in (a) show that∫
cos5 x dx =

1

5
cos4 x sin x +

4

15
cos2 x sin x +

8

15
sin x

(c) Show that if Jn =

∫ π/2

0

cosn x dx, then Jn =

(
n− 1

n

)
Jn−2 (Wallis’ formula).

(d) Using Wallis’ formula show that

∫ π/2

0

cos6 x dx =
5

32
π.

Answers

1. (a) 1
2
x + 1

4
sin 2x + c (b) π/4 (c) θ + c.

2. − 1
10

cos 5x− 1
2
cos x + c.

3. tan x + c.

4. 1
2
.
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