

Sampled Functions

A sequence can be obtained by **sampling** a continuous function or signal and in this Section we show first of all how to extend our knowledge of z-transforms so as to be able to deal with sampled signals. We then show how the z-transform of a sampled signal is related to the Laplace transform of the unsampled version of the signal.

Before starting this Section you should	 possess an outline knowledge of Laplace transforms and of z-transforms
	• take the <i>z</i> -transform of a sequence obtained by sampling
On completion you should be able to	 state the relation between the z-transform of a sequence obtained by sampling and the Laplace transform of the underlying continuous signal

1. Sampling theory

If a continuous-time signal f(t) is sampled at terms $t = 0, T, 2T, \dots nT, \dots$ then a sequence of values

$$\{f(0), f(T), f(2T), \dots f(nT), \dots\}$$

is obtained. The quantity T is called the **sample interval** or **sample period**.

Figure 18

In the previous Sections of this Workbook we have used the simpler notation $\{f_n\}$ to denote a sequence. If the sequence has actually arisen by sampling then f_n is just a convenient notation for the sample value f(nT).

Most of our previous results for z-transforms of sequences hold with only minor changes for sampled signals.

So consider a continuous signal f(t); its z-transform is the z-transform of the sequence of sample values i.e.

$$\mathbb{Z}\lbrace f(t)\rbrace = \mathbb{Z}\lbrace f(nT)\rbrace = \sum_{n=0}^{\infty} f(nT)z^{-n}$$

We shall briefly obtain z-transforms of common sampled signals utilizing results obtained earlier. You may assume that all signals are sampled at $0, T, 2T, \ldots nT, \ldots$

Unit step function

$$u(t) = \begin{cases} 1 & t \ge 0\\ 0 & t < 0 \end{cases}$$

Since the sampled values here are a sequence of 1's,

$$\mathbb{Z}\{u(t)\} = \mathbb{Z}\{u_n\} = \frac{1}{1-z^{-1}} = \frac{z}{z-1} \quad |z| > 1$$

where $\{u_n\} = \{1, 1, 1, \ldots\}$ is the unit step sequence. \uparrow

Ramp function

$$r(t) = \begin{cases} t & t \ge 0\\ 0 & t < 0 \end{cases}$$

The sample values here are

$$\{r(nT)\} = \{0, T, 2T, \ldots\}$$

The ramp sequence $\{r_n\} = \{0, 1, 2, ...\}$ has z-transform $\frac{z}{(z-1)^2}$. Hence $\mathbb{Z}\{r(nT)\} = \frac{Tz}{(z-1)^2}$ since $\{r(nT)\} = T\{r_n\}$.

Obtain the z-transform of the exponential signal

$$f(t) = \begin{cases} e^{-\alpha t} & t \ge 0\\ 0 & t < 0. \end{cases}$$

[Hint: use the z-transform of the geometric sequence $\{a^n\}.]$

Your solution

Answer

The sample values of the exponential are

$$\{1, e^{-\alpha T}, e^{-\alpha 2T}, \dots, e^{-\alpha nT}, \dots\}$$

i.e. $f(nT) = e^{-\alpha nT} = (e^{-\alpha T})^n$.
But $\mathbb{Z}\{a^n\} = \frac{z}{z-a}$
 $\therefore \qquad \mathbb{Z}\{(e^{-\alpha T})^n\} = \frac{z}{z-e^{-\alpha T}} = \frac{1}{1-e^{-\alpha T}z^{-1}}$

Sampled sinusoids

Earlier in this Workbook we obtained the z-transform of the sequence $\{\cos \omega n\}$ i.e.

$$\mathbb{Z}\{\cos\omega n\} = \frac{z^2 - z\cos\omega}{z^2 - 2z\cos\omega + 1}$$

Hence, since sampling the continuous sinusoid

$$f(t) = \cos \omega t$$

yields the sequence $\{\cos n\omega T\}$ we have, simply replacing ω by ωT in the z-transform:

$$\mathbb{Z}\{\cos \omega t\} = \mathbb{Z}\{\cos n\omega T\}$$
$$= \frac{z^2 - z\cos \omega T}{z^2 - 2z\cos \omega T + 1}$$

Obtain the z-transform of the sampled version of the sine wave $f(t) = \sin \omega t$.

Shift theorems

These are similar to those discussed earlier in this Workbook but for sampled signals the shifts are by integer multiples of the sample period T. For example a simple right shift, or delay, of a sampled signal by one sample period is shown in the following figure:

The right shift properties of z-transforms can be written down immediately. (Look back at the shift properties in Section 21.2 subsection 5, if necessary:)

If y(t) has z-transform Y(z) which, as we have seen, really means that its sample values $\{y(nT)\}$ give Y(z), then for y(t) shifted to the right by one sample interval the z-transform becomes

$$\mathbb{Z}\{y(t-T)\} = y(-T) + z^{-1}Y(z)$$

The proof is very similar to that used for sequences earlier which gave the result:

$$\mathbb{Z}\{y_{n-1}\} = y_{-1} + z^{-1}Y(z)$$

Using the result

$$\mathbb{Z}\{y_{n-2}\} = y_{-2} + y_{-1}z^{-1} + z^{-2}Y(z)$$

write down the result for $\mathbb{Z}\{y(t-2T)\}$

Your solution

Answer

 $\mathbb{Z}\{y(t-2T)\} = y(-2T) + y(-T)z^{-1} + z^{-2}Y(z)$

These results can of course be generalised to obtain $\mathbb{Z}\{y(t-mT)\}\$ where m is any positive integer. In particular, for causal or one-sided signals y(t) (i.e. signals which are zero for t < 0):

 $\mathbb{Z}\{y(t-mT)\} = z^{-m}Y(z)$

Note carefully here that the power of z is still z^{-m} **not** z^{-mT} .

HELM (2008): Section 21.5: Sampled Functions

Examples:

For the unit step function we saw that:

$$\mathbb{Z}\{u(t)\} = \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

Hence from the shift properties above we have immediately, since u(t) is certainly causal,

$$\mathbb{Z}\{u(t-T)\} = \frac{zz^{-1}}{z-1} = \frac{z^{-1}}{1-z^{-1}}$$
$$\mathbb{Z}\{u(t-3T)\} = \frac{zz^{-3}}{z-1} = \frac{z^{-3}}{1-z^{-1}}$$

and so on.

Figure 20

2. z-transforms and Laplace transforms

In this Workbook we have developed the theory and some applications of the z-transform from first principles. We mentioned much earlier that the z-transform plays essentially the same role for discrete systems that the Laplace transform does for continuous systems. We now explore the precise link between these two transforms. A brief knowledge of Laplace transform will be assumed.

At first sight it is not obvious that there is a connection. The z-transform is a summation defined, for a sampled signal $f_n \equiv f(nT)$, as

$$F(z) = \sum_{n=0}^{\infty} f(nT) z^{-n}$$

while the Laplace transform written symbolically as $\mathbb{L}{f(t)}$ is an **integral**, defined for a continuous time function f(t), $t \ge 0$ as

$$F(s) = \int_0^\infty f(t)e^{-st}dt.$$

Thus, for example, if

 $f(t) = e^{-\alpha t}$ (continuous time exponential)

$$\mathbb{L}\{f(t)\} = F(s) = \frac{1}{s+\alpha}$$

which has a (simple) pole at $s = -\alpha = s_1$ say. As we have seen, sampling f(t) gives the sequence $\{f(nT)\} = \{e^{-\alpha nT}\}$ with z-transform

$$F(z) = \frac{1}{1 - e^{-\alpha T} z^{-1}} = \frac{z}{z - e^{-\alpha T}}$$

The z-transform has a pole when $z = z_1$ where

$$z_1 = e^{-\alpha T} = e^{s_1 T}$$

[Note the abuse of notations in writing both F(s) and F(z) here since in fact these are **different** functions.]

Task The continuous time function
$$f(t) = te^{-\alpha t}$$
 has Laplace transform $F(s) = \frac{1}{(s+\alpha)^2}$

Firstly write down the pole of this function and its order:

Answer $F(s) = \frac{1}{(s + \alpha)^2}$ has its pole at $s = s_1 = -\alpha$. The pole is second order.

Now obtain the z-transform F(z) of the sampled version of f(t), locate the pole(s) of F(z) and state the order:

Your solution

Your solution

Answer Consider $f(nT) = nTe^{-\alpha nT} = (nT)(e^{-\alpha T})^n$ The ramp sequence $\{nT\}$ has z-transform $\frac{Tz}{(z-1)^2}$ $\therefore f(nT)$ has z-transform $F(z) = \frac{Tze^{\alpha T}}{(ze^{\alpha T}-1)^2} = \frac{Tze^{-\alpha T}}{(z-e^{-\alpha T})^2}$ (see Key Point 8) This has a (second order) pole when $z = z_1 = e^{-\alpha T} = e^{s_1 T}$.

We have seen in both the above examples a close link between the pole s_1 of the Laplace transform of f(t) and the pole z_1 of the z-transform of the sampled version of f(t) i.e.

$$z_1 = e^{s_1 T} \tag{1}$$

where T is the sample interval.

Multiple poles lead to similar results i.e. if F(s) has poles s_1, s_2, \ldots then F(z) has poles z_1, z_2, \ldots where $z_i = e^{s_i T}$.

The relation (1) between the poles is, in fact, an example of a more general relation between the values of s and z as we shall now investigate.

The rectangular pulse $P_{\epsilon}(t)$ of width ε and height $\frac{1}{\varepsilon}$ shown in Figure 21 encloses unit area and has Laplace transform

$$P_{\varepsilon}(s) = \int_0^{\varepsilon} \frac{1}{\varepsilon} e^{-st} = \frac{1}{\varepsilon s} (1 - e^{-\varepsilon s})$$
⁽²⁾

As ε becomes smaller $P_{\varepsilon}(t)$ becomes taller and narrower but still encloses unit area. The unit impulse function $\delta(t)$ (sometimes called the Dirac delta function) can be defined as

$$\delta(t) = \lim_{\varepsilon \to 0} P_{\varepsilon}(t)$$

i.e.

The Laplace transform, say $\Delta(s)$, of $\delta(t)$ can be obtained correspondingly by letting $\epsilon \to 0$ in (2), i.e.

$$\Delta(s) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon s} (1 - e^{-\varepsilon s})$$

$$= \lim_{\varepsilon \to 0} \frac{1 - (1 - \varepsilon s + \frac{(\varepsilon s)^2}{2!} - \dots)}{\varepsilon s} \qquad \text{(Using the Maclaurin seies expansion of } e^{-\varepsilon s})$$

$$= \lim_{\varepsilon \to 0} \frac{\varepsilon s - \frac{(\varepsilon s)^2}{2!} + \frac{(\varepsilon s)^3}{3!} + \dots}{\varepsilon s}$$

$$= 1$$

$$\mathbb{L}\delta(t) = 1 \qquad (3)$$

Obtain the Laplace transform of this rectangular pulse and, by letting $\varepsilon \to 0$, obtain the Laplace transform of $\delta(t - nT)$.

nT

Answer

$$\mathbb{L}\{P_{\varepsilon}(t-nT)\} = \int_{nT}^{nT+\varepsilon} \frac{1}{\varepsilon} e^{-st} dt = \frac{1}{\varepsilon s} \left[-e^{-st} \right]_{nT}^{nT+\varepsilon}$$
$$= \frac{1}{\varepsilon s} \left(e^{-snT} - e^{-s(nT+\varepsilon)} \right)$$
$$= \frac{1}{\varepsilon s} e^{-snT} (1 - e^{-s\varepsilon}) \to e^{-snT} \text{ as } \varepsilon \to 0$$
$$\text{Hence } \mathbb{L}\{\delta(t-nT)\} = e^{-snT} \qquad (4)$$
which reduces to the result (3)
$$\mathbb{L}\{\delta(t)\} = 1 \quad \text{when } n = 0$$

These results (3) and (4) can be compared with the results

$$\mathbb{Z}\{\delta_n\} = 1$$

$$\mathbb{Z}\{\delta_{n-m}\} = z^{-m}$$

for discrete impulses of height 1.

Now consider a continuous function f(t). Suppose, as usual, that this function is sampled at t = nT for n = 0, 1, 2, ...

Figure 22

This sampled equivalent of f(t), say $f_*(t)$ can be defined as a sequence of equidistant impulses, the 'strength' of each impulse being the sample value f(nT) i.e.

$$f_*(t) = \sum_{n=0}^{\infty} f(nT)\delta(t - nT)$$

This function is a continuous-time signal i.e. is defined for all t. Using (4) it has a Laplace transform

$$F_{*}(s) = \sum_{n=0}^{\infty} f(nT)e^{-snT}$$
(5)

If, in this sum (5) we replace e^{sT} by z we obtain the z-transform of the sequence $\{f(nT)\}$ of samples:

$$\sum_{n=0}^{\infty} f(nT) z^{-n}$$

The Laplace transform

$$F(s) = \sum_{n=0}^{\infty} f(nT)e^{-snT}$$

of a sampled function is equivalent to the z-transform F(z) of the sequence $\{f(nT)\}$ of sample values with $z = e^{sT}$.

Table 2:z-transforms of some sampled signals

This table can be compared with the table of the z-transforms of sequences on the following page.

f(t)	f(nT)	F(z)	Radius of convergence
$t \ge 0$	$n = 0, 1, 2, \dots$		R
1	1	$\frac{z}{z-1}$	1
t	nT	$rac{z}{(z-1)^2}$	1
t^2	$(nT)^2$	$\frac{T^2 z(z+1)}{(z-1)^3}$	1
$e^{-lpha t}$	$e^{-\alpha nT}$	$\frac{z}{z - e^{-\alpha T}}$	$ e^{-lpha T} $
$\sin \omega t$	$\sin n\omega T$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	1
$\cos \omega t$	$\cos n\omega T$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	1
$te^{-\alpha t}$	$nTe^{-\alpha nT}$	$\frac{Tze^{-\alpha T}}{(z-e^{-\alpha T})^2}$	$ e^{-\alpha T} $
$e^{-\alpha t}\sin\omega t$	$e^{-\alpha nT}\sin\omega nT$	$\frac{e^{-\alpha T}z^{-1}\sin\omega T}{1-2e^{-\alpha T}z^{-1}\cos\omega T+e^{-2aT}z^{-2}}$	$ e^{-lpha T} $
$e^{-\alpha T}\cos\omega t$	$e^{-\alpha nT}\cos\omega nT$	$\frac{1 - e^{-\alpha T} z^{-1} \cos \omega T}{1 - 2e^{-\alpha T} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$	$ e^{-lpha T} $

Note: R is such that the closed forms of F(z) (those listed in the above table) are valid for |z| > R.

Table of z-transforms

f_n	F(z)	Name
δ_n	1	unit impulse
δ_{n-m}	z ^{-m}	
<i>u_n</i>	$\frac{z}{z-1}$	unit step sequence
a^n	$\frac{z}{z-a}$	geometric sequence
$e^{\alpha n}$	$\frac{z}{z - e^{\alpha}}$	
$\sinh \alpha n$	$\frac{z\sinh\alpha}{z^2 - 2z\cosh\alpha + 1}$	
$\cosh \alpha n$	$\frac{z^2 - z\cosh\alpha}{z^2 - 2z\cosh\alpha + 1}$	
$\sin \omega n$	$\frac{z\sin\omega}{z^2 - 2z\cos\omega + 1}$	
$\cos \omega n$	$\frac{z^2 - z\cos\omega}{z^2 - 2z\cos\omega + 1}$	
$e^{-\alpha n}\sin\omega n$	$\frac{ze^{-\alpha}\sin\omega}{z^2 - 2ze^{-\alpha}\cos\omega + e^{-2\alpha}}$	
$e^{-\alpha n}\cos\omega n$	$\frac{z^2 - ze^{-\alpha}\cos\omega}{z^2 - 2ze^{-\alpha}\cos\omega + e^{-2\alpha}}$	
n	$\frac{z}{(z-1)^2}$	ramp sequence
n^2	$\frac{z(z+1)}{(z-1)^3}$	
n ³	$\frac{z(z^2+4z+1)}{(z-1)^4}$	
$a^n f_n$	$F\left(\frac{z}{a}\right)$	
$n f_n$	$-z\frac{dF}{dz}$	