
®

Sampled Functions
�
�

�
�21.5

Introduction
A sequence can be obtained by sampling a continuous function or signal and in this Section we
show first of all how to extend our knowledge of z-transforms so as to be able to deal with sampled
signals. We then show how the z-transform of a sampled signal is related to the Laplace transform
of the unsampled version of the signal.
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Prerequisites

Before starting this Section you should . . .

• possess an outline knowledge of Laplace
transforms and of z-transforms
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Learning Outcomes
On completion you should be able to . . .

• take the z-transform of a sequence obtained
by sampling

• state the relation between the z-transform of
a sequence obtained by sampling and the
Laplace transform of the underlying
continuous signal
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1. Sampling theory
If a continuous-time signal f(t) is sampled at terms t = 0, T, 2T, . . . nT, . . . then a sequence of
values

{f(0), f(T ), f(2T ), . . . f(nT ), . . .}

is obtained. The quantity T is called the sample interval or sample period.

t

T 2T nT

f(t)

- - - - - -

Figure 18

In the previous Sections of this Workbook we have used the simpler notation {fn} to denote a
sequence. If the sequence has actually arisen by sampling then fn is just a convenient notation for
the sample value f(nT ).

Most of our previous results for z-transforms of sequences hold with only minor changes for sampled
signals.

So consider a continuous signal f(t); its z-transform is the z-transform of the sequence of sample
values i.e.

Z{f(t)} = Z{f(nT )} =
∞∑

n=0

f(nT )z−n

We shall briefly obtain z-transforms of common sampled signals utilizing results obtained earlier. You
may assume that all signals are sampled at 0, T, 2T, . . . nT, . . .

Unit step function

u(t) =

{
1 t ≥ 0
0 t < 0

Since the sampled values here are a sequence of 1’s,

Z{u(t)} = Z{un} =
1

1− z−1

=
z

z − 1
|z| > 1

where {un} = {1, 1, 1, . . .} is the unit step sequence.
↑
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Ramp function

r(t) =

{
t t ≥ 0
0 t < 0

The sample values here are

{r(nT )} = {0, T, 2T, . . .}

The ramp sequence {rn} = {0, 1, 2, . . .} has z-transform
z

(z − 1)2
.

Hence Z{r(nT )} =
Tz

(z − 1)2
since {r(nT )} = T{rn}.

Task

Obtain the z-transform of the exponential signal

f(t) =

{
e−αt t ≥ 0
0 t < 0.

[Hint: use the z-transform of the geometric sequence {an}.]

Your solution

Answer
The sample values of the exponential are

{1, e−αT , e−α2T , . . . , e−αnT , . . .}

i.e. f(nT ) = e−αnT = (e−αT )n.

But Z{an} =
z

z − a

∴ Z{(e−αT )n} =
z

z − e−αT
=

1

1− e−αT z−1
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Sampled sinusoids
Earlier in this Workbook we obtained the z-transform of the sequence {cos ωn} i.e.

Z{cos ωn} =
z2 − z cos ω

z2 − 2z cos ω + 1

Hence, since sampling the continuous sinusoid

f(t) = cos ωt

yields the sequence {cos nωT} we have, simply replacing ω by ωT in the z-transform:

Z{cos ωt} = Z{cos nωT}

=
z2 − z cos ωT

z2 − 2z cos ωT + 1

Task

Obtain the z-transform of the sampled version of the sine wave f(t) = sin ωt.

Your solution

Answer

Z{sin ωn} =
z sin ω

z2 − 2z cos ω + 1

∴ Z{sin ωt} = Z{sin nωT}

=
z sin ωT

z2 − 2z cos ωT + 1
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Shift theorems
These are similar to those discussed earlier in this Workbook but for sampled signals the shifts are
by integer multiples of the sample period T . For example a simple right shift, or delay, of a sampled
signal by one sample period is shown in the following figure:

t

T 2T

t

T 2T

3T

3T

f(nT )

f(nT − T )

4T

Figure 19

The right shift properties of z-transforms can be written down immediately. (Look back at the shift
properties in Section 21.2 subsection 5, if necessary:)

If y(t) has z-transform Y (z) which, as we have seen, really means that its sample values {y(nT )}
give Y (z), then for y(t) shifted to the right by one sample interval the z-transform becomes

Z{y(t− T )} = y(−T ) + z−1Y (z)

The proof is very similar to that used for sequences earlier which gave the result:

Z{yn−1} = y−1 + z−1Y (z)

Task

Using the result

Z{yn−2} = y−2 + y−1z
−1 + z−2Y (z)

write down the result for Z{y(t− 2T )}

Your solution

Answer

Z{y(t− 2T )} = y(−2T ) + y(−T )z−1 + z−2Y (z)

These results can of course be generalised to obtain Z{y(t−mT )} where m is any positive integer.
In particular, for causal or one-sided signals y(t) (i.e. signals which are zero for t < 0):

Z{y(t−mT )} = z−mY (z)

Note carefully here that the power of z is still z−m not z−mT .
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Examples:
For the unit step function we saw that:

Z{u(t)} =
z

z − 1
=

1

1− z−1

Hence from the shift properties above we have immediately, since u(t) is certainly causal,

Z{u(t− T )} =
zz−1

z − 1
=

z−1

1− z−1

Z{u(t− 3T )} =
zz−3

z − 1
=

z−3

1− z−1

and so on.

t

T 2T

t

T 2T

3T

3T 5T4T

u(t − T )

u(t − 3T )

Figure 20

2. z-transforms and Laplace transforms
In this Workbook we have developed the theory and some applications of the z-transform from first
principles. We mentioned much earlier that the z-transform plays essentially the same role for discrete
systems that the Laplace transform does for continuous systems. We now explore the precise link
between these two transforms. A brief knowledge of Laplace transform will be assumed.

At first sight it is not obvious that there is a connection. The z-transform is a summation defined,
for a sampled signal fn ≡ f(nT ), as

F (z) =
∞∑

n=0

f(nT )z−n

while the Laplace transform written symbolically as L{f(t)} is an integral, defined for a continuous
time function f(t), t ≥ 0 as

F (s) =

∫ ∞

0

f(t)e−stdt.
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Thus, for example, if

f(t) = e−αt (continuous time exponential)

L{f(t)} = F (s) =
1

s + α

which has a (simple) pole at s = −α = s1 say.
As we have seen, sampling f(t) gives the sequence {f(nT )} = {e−αnT} with z-transform

F (z) =
1

1− e−αT z−1
=

z

z − e−αT
.

The z-transform has a pole when z = z1 where

z1 = e−αT = es1T

[Note the abuse of notations in writing both F (s) and F (z) here since in fact these are different
functions.]

Task

The continuous time function f(t) = te−αt has Laplace transform

F (s) =
1

(s + α)2

Firstly write down the pole of this function and its order:

Your solution

Answer

F (s) =
1

(s + α)2
has its pole at s = s1 = −α. The pole is second order.

Now obtain the z-transform F (z) of the sampled version of f(t), locate the pole(s) of F (z) and
state the order:

Your solution
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Answer
Consider f(nT ) = nTe−αnT = (nT )(e−αT )n

The ramp sequence {nT} has z-transform
Tz

(z − 1)2

∴ f(nT ) has z-transform

F (z) =
TzeαT

(zeαT − 1)2
=

Tze−αT

(z − e−αT )2
(see Key Point 8)

This has a (second order) pole when z = z1 = e−αT = es1T .

We have seen in both the above examples a close link between the pole s1 of the Laplace transform
of f(t) and the pole z1 of the z-transform of the sampled version of f(t) i.e.

z1 = es1T (1)

where T is the sample interval.

Multiple poles lead to similar results i.e. if F (s) has poles s1, s2, . . . then F (z) has poles z1, z2, . . .
where zi = esiT .

The relation (1) between the poles is, in fact, an example of a more general relation between the
values of s and z as we shall now investigate.

Key Point 19

The unit impulse function δ(t) can be defined informally as follows:

t
ε

1
ε

Pε(t)

Figure 21

The rectangular pulse Pε(t) of width ε and height
1

ε
shown in Figure 21 encloses unit area and has

Laplace transform

Pε(s) =

∫ ε

0

1

ε
e−st =

1

εs
(1− e−εs) (2)

As ε becomes smaller Pε(t) becomes taller and narrower but still encloses unit area. The unit impulse
function δ(t) (sometimes called the Dirac delta function) can be defined as
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δ(t) = lim
ε→0

Pε(t)

The Laplace transform, say ∆(s), of δ(t) can be obtained correspondingly by letting ε → 0 in (2),
i.e.

∆(s) = lim
ε→0

1

εs
(1− e−εs)

= lim
ε→0

1− (1− εs +
(εs)2

2!
− . . .)

εs
(Using the Maclaurin seies expansion of e−εs)

= lim
ε→0

εs− (εs)2

2!
+

(εs)3

3!
+ . . .

εs

= 1

i.e. Lδ(t) = 1 (3)

Task

A shifted unit impulse δ(t−nT ) is defined as lim
ε→0

Pε(t−nT ) as illustrated below.

t

1
ε

nT nT + ε

Pε(t − nT )

Obtain the Laplace transform of this rectangular pulse and, by letting ε → 0,
obtain the Laplace transform of δ(t− nT ).

Your solution
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Answer

L{Pε(t− nT )} =

∫ nT+ε

nT

1

ε
e−stdt =

1

εs

[
− e−st

]nT+ε

nT

=
1

εs

(
e−snT − e−s(nT+ε)

)
=

1

εs
e−snT (1− e−sε) → e−snT as ε → 0

Hence L{δ(t− nT )} = e−snT (4)

which reduces to the result (3)

L{δ(t)} = 1 when n = 0

These results (3) and (4) can be compared with the results

Z{δn} = 1

Z{δn−m} = z−m

for discrete impulses of height 1.

Now consider a continuous function f(t). Suppose, as usual, that this function is sampled at t = nT
for n = 0, 1, 2, . . .

t

T 2T

f(t)

4T3T

- - - - - - 

Figure 22

This sampled equivalent of f(t), say f∗(t) can be defined as a sequence of equidistant impulses, the
‘strength’ of each impulse being the sample value f(nT )i.e.

f∗(t) =
∞∑

n=0

f(nT )δ(t− nT )

This function is a continuous-time signal i.e. is defined for all t. Using (4) it has a Laplace transform

F∗(s) =
∞∑

n=0

f(nT )e−snT (5)

If, in this sum (5) we replace esT by z we obtain the z-transform of the sequence {f(nT )} of samples:

∞∑
n=0

f(nT )z−n
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Key Point 20

The Laplace transform

F (s) =
∞∑

n=0

f(nT )e−snT

of a sampled function is equivalent to the z-transform F (z) of the sequence {f(nT )} of sample
values with z = esT .

Table 2: z-transforms of some sampled signals

This table can be compared with the table of the z-transforms of sequences on the following page.

f(t) f(nT ) F (z) Radius of convergence
t ≥ 0 n = 0, 1, 2, . . . R

1 1
z

z − 1
1

t nT
z

(z − 1)2
1

t2 (nT )2 T 2z(z + 1)

(z − 1)3
1

e−αt e−αnT z

z − e−αT
|e−αT |

sin ωt sin nωT
z sin ωT

z2 − 2z cos ωT + 1
1

cos ωt cos nωT
z(z − cos ωT )

z2 − 2z cos ωT + 1
1

te−αt nTe−αnT Tze−αT

(z − e−αT )2
|e−αT |

e−αt sin ωt e−αnT sin ωnT
e−αT z−1 sin ωT

1− 2e−αT z−1 cos ωT + e−2aT z−2
|e−αT |

e−αT cos ωt e−αnT cos ωnT
1− e−αT z−1 cos ωT

1− 2e−αT z−1 cos ωT + e−2aT z−2
|e−αT |

Note: R is such that the closed forms of F (z) (those listed in the above table) are valid for |z| > R.
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Table of z-transforms

fn F (z) Name

δn 1 unit impulse

δn−m z−m

un
z

z − 1
unit step sequence

an z

z − a
geometric sequence

eαn z

z − eα

sinh αn
z sinh α

z2 − 2z cosh α + 1

cosh αn
z2 − z cosh α

z2 − 2z cosh α + 1

sin ωn
z sin ω

z2 − 2z cos ω + 1

cos ωn
z2 − z cos ω

z2 − 2z cos ω + 1

e−αn sin ωn
ze−α sin ω

z2 − 2ze−α cos ω + e−2α

e−αn cos ωn
z2 − ze−α cos ω

z2 − 2ze−α cos ω + e−2α

n
z

(z − 1)2
ramp sequence

n2 z(z + 1)

(z − 1)3

n3 z(z2 + 4z + 1)

(z − 1)4

anfn F
(z

a

)
n fn −z

dF

dz
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