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Introduction
In this Section we examine, briefly, the convergence characteristics of a Fourier series. We have seen
that a Fourier series can be found for functions which are not necessarily continuous (there may be
jumps in the curve) − the only requirement that we have made is that the function be periodic. We
have seen that the more terms we take in the Fourier series the better is the approximation to the
given signal. But an obvious question to ask is what happens at the points of discontinuity? What
does the Fourier series converge to at these points? It must converge to something (finite) since a
Fourier series is a sum of very smooth continuous functions. In this Section we give the answer to
this question.
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Prerequisites

Before starting this Section you should . . .

• know how to obtain a Fourier series

• be familiar with the limit process as applied
to functions'
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Learning Outcomes

On completion you should be able to . . .

• determine what a Fourier series converges to
at each point, including at a point of
discontinuity

• use the convergence property of Fourier
Series to obtain series for the number π
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1. Convergence of a Fourier series
We have now shown how to obtain a Fourier series for periodic functions. We have suggested that
we would expect to be able to approximate such functions by using a few terms of the Fourier series.

The detailed question of the convergence or otherwise of Fourier series has not been discussed.
The reason for this is that the great majority of functions likely to be encountered in practice have
Fourier series that do indeed converge and can therefore be safely used as approximations.

The precise conditions that have to be fulfilled for a Fourier series to converge are known as Dirichlet
conditions after the French mathematician who investigated the matter. The three conditions are
listed in the following Key Point.

Key Point 6

The Dirichlet conditions for the convergence of a Fourier series of a periodic function f(t) are:

1. f(t) must have only a finite number of finite discontinuities, within one period

2. f(t) must have a finite number of maxima and minima over one period

3. the integral

∫ T
2

−T
2

|f(t)| dt must be finite.

It follows, for example, that if f(t) is defined over (−π, π) as one of the following functions t3 or
1/(t− 4) or 3t + 2 and f(t + 2π) = f(t), then f(t) can indeed be represented as a Fourier series as
each function satisfies the Dirichlet conditions.

On the other hand, if, over (−π, π), f(t) is
1

t
or

1

t − 2
or tan t then f(t) cannot be expanded in a

Fourier series because each of these functions has an infinite discontinuity within (−π, π).

If the Dirichlet conditions are satisfied at a point t = t0 where f(t) is continuous then, as we would
expect, the Fourier series at t0 given by

a0

2
+

∞∑
n=1

{
an cos

(
2nπt0

T

)
+ bn sin

(
2nπt0

T

)}
converges to the function value f(t0)

At a point, say t = t1, at which f(t) has a discontinuity then the series

a0

2
+

∞∑
n=1

{
an cos

(
2nπt1

T

)
+ bn sin

(
2nπt1

T

)}
converges to

1

2
{f(t1−) + f(t1+)}

where f(t1−) is the limit of f(t) as t approaches t1 from the left and f(t1+) is the limit as t approaches
t1 from the right (Figure 19).
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Key Point 7

If Dirichlet conditions are satisfied then at a point of continuity t = to

f(t0) =
a0

2
+

∞∑
n=1

{
an cos

(
2nπt0

T

)
+ bn sin

(
2nπt0

T

)}
whereas at a point of discontinuity t = t1 the Fourier series converges to the average of the two
limiting values

1

2
{f(t1−) + f(t1+)} =

a0

2
+

∞∑
n=1

{
an cos

(
2nπt1

T

)
+ bn sin

(
2nπt1

T

)}

Example 2
Suppose we consider the square wave

t

f(t)

π 2π−π

1

Figure 20

Here f(t) has finite discontinuities at −π, 0 and π. The Fourier series of f(t) is (see Section 23.3,
subsection 2)

1

2
+

2

π

(
sin t +

1

3
sin 3t +

1

5
sin 5t + . . .

)
.
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At t =
π

2
, for example, where f(t) is continuous the square wave converges to f

(π

2

)
= 1. On the

other hand at t = π the Fourier series clearly has the value
1

2
(since all the sine terms are zero here).

This value
1

2
agrees with the average of the two limiting values of f(t) at t =

π

2
:

1

2
(1 + 0) =

1

2
. If

we actually put t =
π

2
in the Fourier series we obtain

1

2
+

2

π

(
sin

(π

2

)
+

1

3
sin

(
3π

2

)
+

1

5
sin

(
5π

2

)
+ . . .

)
=

1

2
+

2

π

(
1 − 1

3
+

1

5
− 1

7
+ . . .

)
Since the series converges, as we have seen, to f

(π

2

)
= 1, we obtain the interesting result

1

2
+

2

π

(
1 − 1

3
+

1

5
− 1

7
+ . . .

)
= 1 or 1 − 1

3
+

1

5
− 1

7
+ . . . =

π

4

Task

The function

f(t) =

{
0 −π < t < 0
t2 0 < t < π

f(t + 2π) = f(t)

tπ−π

f (t)

2π

has Fourier series (see Exercise 4 at the end of Section 23.2)

π2

6
− 2

(
cos t − cos 2t

4
+

cos 3t

9
− . . .

)
+

{(
π − 4

π

)
sin t − π

2
sin 2t +

(
π

3
− 4

9π

)
sin 3t − π

4
sin 4t + . . .

}
By using a suitable value of t show that

1 +
1

4
+

1

9
+

1

16
+ . . . =

π2

6
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First decide on the appropriate value of t to use:

Your solution

Answer
Looking at the Fourier series, the numerical series we seek is present in the cosine terms so we need
to remove the sine terms. This we can do by selecting t = 0 or t = π. The choice t = 0 will make
the cosine terms become:

1 − 1

4
+

1

9
− . . .

which is not what we seek. Hence we put t = π.

Now put t = π in the series and decide what the Fourier series will converge to at this value. Hence
complete the question:

Your solution

Answer
At t = π the Fourier series is

π2

6
− 2

(
cos π − cos 2π

4
+

cos 3π

9
− . . .

)
=

π2

6
− 2

(
−1 − 1

4
− 1

9
− 1

16
− . . .

)
=

π2

6
+ 2

(
1 +

1

4
+

1

9
+

1

16
+ . . .

)
At t = π the Fourier series will converge to

1

2

(
π2 + 0

)
=

π2

2
(the average of the left and right hand limits)

So
π2

6
+2

(
1 +

1

4
+

1

9
+

1

16
+ . . .

)
=

π2

2
∴ 1+

1

4
+

1

9
+

1

16
+. . . =

1

2

(
π2

2
− π2

6

)
=

π2

6

Note that in the last Task if we substitute t = 0 in the Fourier series (which converges to f(0) = 0)
we obtain another infinite series but with alternating signs:

π2

6
− 2

(
1 − 1

4
+

1

9
− . . .

)
= 0 or 1 − 1

4
+

1

9
− 1

16
+ . . . =

π2

12
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Exercises

1. Obtain the Fourier series of

f(t) = |t| − π ≤ t ≤ π f(t + 2π) = f(t)

By putting t = 0 show that

∞∑
n=1

1

(2n − 1)2
=

π2

8

2. (a) Obtain the Fourier series of the 2π periodic function

f(t) =
t2

4
− π ≤ t ≤ π

and use it to obtain the following identities:

(i) 1 +
1

22
+

1

32
+

1

42
+ · · · =

π2

6
(ii) 1 − 1

22
+

1

32
− 1

42
+ · · · =

π2

12

(b) Show that 1 +
1

32
+

1

52
+

1

72
· · · =

π2

8

3. Obtain the Fourier series of the 2π periodic function

f(t) = t − π ≤ t ≤ π

Use the series to show that

1 − 1

3
+

1

5
− 1

7
+ · · · =

π

4

Answers

1.
π

2
+

∞∑
n=1

(−4)

(2n − 1)2π
cos[(2n − 1)t]

2. (a)
π2

12
+

∞∑
n=1

cos(nπ)

n2
cos nt (i) Put t = π (ii) Put t = 0

(b) Add the two series from (a).

3. −2
∞∑

n=1

(−1)n

n
sin nt

HELM (2008):
Section 23.4: Convergence

45


