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Introduction
In this Section we address the following problem:

Can we find a Fourier series expansion of a function defined over a finite interval?

Of course we recognise that such a function could not be periodic (as periodicity demands an infinite
interval). The answer to this question is yes but we must first convert the given non-periodic function
into a periodic function. There are many ways of doing this. We shall concentrate on the most useful
extension to produce a so-called half-range Fourier series.
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Prerequisites

Before starting this Section you should . . .

• know how to obtain a Fourier series

• be familiar with odd and even functions and
their properties

• have knowledge of integration by parts�

�

�
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Learning Outcomes

On completion you should be able to . . .

• choose to expand a non-periodic function
either as a series of sines or as a series of
cosines
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1. Half-range Fourier series
So far we have shown how to represent given periodic functions by Fourier series. We now consider a
slight variation on this theme which will be useful in 25 on solving Partial Differential Equations.

Suppose that instead of specifying a periodic function we begin with a function f(t) defined only
over a limited range of values of t, say 0 < t < π. Suppose further that we wish to represent this
function, over 0 < t < π, by a Fourier series. (This situation may seem a little artificial at this point,
but this is precisely the situation that will arise in solving differential equations.)
To be specific, suppose we define f(t) = t2 0 < t < π

t

f(t)

π

π2

t2

Figure 21

We shall consider the interval 0 < t < π to be half a period of a 2π periodic function. We must
therefore define f(t) for −π < t < 0 to complete the specification.

Task

Complete the definition of the above function f(t) = t2, 0 < t < π

by defining it over −π < t < 0 such that the resulting functions will have a Fourier
series containing

(a) only cosine terms, (b) only sine terms, (c) both cosine and sine terms.

Your solution
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Answer
(a) We must complete the definition so as to have an even periodic function:

f(t) = t2, −π < t < 0

tπ−π

f1(t)

2π

(b) We must complete the definition so as to have an odd periodic function:

f(t) = −t2, −π < t < 0

tπ−π

f2(t)

2π

(c) We may define f(t) in any way we please (other than (a) and (b) above). For example we might
define f(t) = 0 over −π < t < 0:

tπ−π

f3(t)

2π

The point is that all three periodic functions f1(t), f2(t), f3(t) will give rise to a different Fourier
series but all will represent the function f(t) = t2 over 0 < t < π. Fourier series obtained by
extending functions in this sort of way are often referred to as half-range series.

Normally, in applications, we require either a Fourier Cosine series (so we would complete a definition
as in (i) above to obtain an even periodic function) or a Fourier Sine series (for which, as in (ii)
above, we need an odd periodic function.)

The above considerations apply equally well for a function defined over any interval.
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Example 3
Obtain the half range Fourier Sine series to represent f(t) = t2 0 < t < 3.

Solution

We first extend f(t) as an odd periodic function F (t) of period 6: f(t) = −t2, −3 < t < 0

t3

F (t)

Figure 22

We now evaluate the Fourier series of F (t) by standard techniques but take advantage of the
symmetry and put an = 0, n = 0, 1, 2, . . ..

Using the results for the Fourier Sine coefficients for period T from 23.2 subsection 5,

bn =
2

T

∫ T
2

−T
2

F (t) sin

(
2nπt

T

)
dt,

we put T = 6 and, since the integrand is even (a product of 2 odd functions), we can write

bn =
2

3

∫ 3

0

F (t) sin

(
2nπt

6

)
dt =

2

3

∫ 3

0

t2 sin

(
nπt

3

)
dt.

(Note that we always integrate over the originally defined range, in this case 0 < t < 3.)

We now have to integrate by parts (twice!)

bn =
2

3

{[
−3t2

nπ
cos

(
nπt

3

)]3

0

+ 2

(
3

nπ

) ∫ 3

0

t cos

(
nπt

3

)
dt

}

=
2

3

{
− 27

nπ
cos nπ +

6

nπ

[
3

nπ
t sin

nπt

3

]3

0

−
(

6

nπ

) (
3

nπ

) ∫ 3

0

sin

(
nπt

3

)
dt

}

=
2

3

{
− 27

nπ
cos nπ − 18

n2π2

[
− 3

nπ
cos

(
nπt

3

)]3

0

}
=

2

3

{
− 27

nπ
cos nπ +

54

n3π3
(cos nπ − 1)

}

=


− 18

nπ
n = 2, 4, 6, . . .

18

nπ
− 72

n3π3
n = 1, 3, 5, . . .

So the required Fourier Sine series is

F (t) = 18

(
1

π
− 4

π3

)
sin

(
πt

3

)
− 18

2π
sin

(
2πt

3

)
+ 18

(
1

3π
− 4

27π3

)
sin(πt) − . . .
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Task

Obtain a half-range Fourier Cosine series to represent the function

f(t) = 4 − t 0 < t < 4.

t

f(t)

4

4

First complete the definition to obtain an even periodic function F (t) of period 8. Sketch F (t):

Your solution

Answer

t

(t)

4

4

4−

F

Now formulate the integral from which the Fourier coefficients an can be calculated:

Your solution

Answer
We have with T = 8

an =
2

8

∫ 4

−4

F (t) cos

(
2nπt

8

)
dt

Utilising the fact that the integrand here is even we get

an =
1

2

∫ 4

0

(4 − t) cos

(
nπt

4

)
dt
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Now integrate by parts to obtain an and also obtain a0:

Your solution

Answer
Using integration by parts we obtain for n = 1, 2, 3, . . .

an =
1

2

{[
(4 − t)

4

nπ
sin

(
nπt

4

)]4

0

+
4

nπ

∫ 4

0

sin

(
nπt

4

)
dt

}

=
1

2

(
4

nπ

) (
4

nπ

) [
− cos

(
nπt

4

)]4

0

=
8

n2π2
[− cos(nπ) + 1]

i.e. an =


0 n = 2, 4, 6, . . .

16

n2π2
n = 1, 3, 5, . . .

Also a0 =
1

2

∫ 4

0

(4 − t) dt = 4. So the constant term is
a0

2
= 2.

Now write down the required Fourier series:

Your solution

Answer

We get 2 +
16

π2

{
cos

(
πt

4

)
+

1

9
cos

(
3πt

4

)
+

1

25
cos

(
5πt

4

)
+ . . .

}
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Note that the form of the Fourier series (a constant of 2 together with odd harmonic cosine terms)
could be predicted if, in the sketch of F (t), we imagine raising the t-axis by 2 units i.e. writing

F (t) = 2 + G(t)

t

(t)

4

2

4−

G

2−

Figure 23
Clearly G(t) possesses half-period symmetry

G(t + 4) = −G(t)

and hence its Fourier series must contain only odd harmonics.

Exercises

Obtain the half-range Fourier series specified for each of the following functions:

1. f(t) = 1 0 ≤ t ≤ π (sine series)

2. f(t) = t 0 ≤ t ≤ 1 (sine series)

3. (a) f(t) = e2t 0 ≤ t ≤ 1 (cosine series)

(b) f(t) = e2t 0 ≤ t ≤ π (sine series)

4. (a) f(t) = sin t 0 ≤ t ≤ π (cosine series)

(b) f(t) = sin t 0 ≤ t ≤ π (sine series)

Answers

1.
4

π

{
sin t +

1

3
sin 3t +

1

5
sin 5t + · · ·

}
2.

2

π
{sin πt− 1

2
sin 2πt +

1

3
sin 3πt− · · · }

3. (a)
e2 − 1

2
+

∞∑
n=1

4

4 + n2π2
{e2 cos(nπ) − 1} cos nπt

(b)
∞∑

n=1

2nπ

4 + n2π2
{1 − e2 cos(nπ)} sin nπt

4. (a)
2

π
+

∞∑
n=2

1

π

{
1

1 − n
(1 − cos(1 − n)π) +

1

1 + n
(1 − cos(1 + n)π)

}
cos nt

(b) sin t itself (!)
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