

The Complex Form

Introduction

In this Section we show how a Fourier series can be expressed more concisely if we introduce the complex number i where $i^2 = -1$. By utilising the Euler relation:

$$e^{i\theta} \equiv \cos\theta + i\sin\theta$$

we can replace the trigonometric functions by complex exponential functions. By also combining the Fourier coefficients a_n and b_n into a complex coefficient c_n through

$$c_n = \frac{1}{2}(a_n - \mathsf{i}b_n)$$

we find that, for a given periodic signal, both sets of constants can be found in one operation.

We also obtain Parseval's theorem which has important applications in electrical engineering.

The complex formulation of a Fourier series is an important precursor of the Fourier transform which attempts to Fourier analyse non-periodic functions.

	• know how to obtain a Fourier series
Prerequisites	 be competent working with the complex numbers
Before starting this Section you should	 be familiar with the relation between the exponential function and the trigonometric functions
Learning Outcomes	• express a periodic function in terms of its Fourier series in complex form
On completion you should be able to	 understand Parseval's theorem

1. Complex exponential form of a Fourier series

So far we have discussed the **trigonometric** form of a Fourier series i.e. we have represented functions of period T in the terms of sinusoids, and possibly a constant term, using

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos\left(\frac{2n\pi t}{T}\right) + b_n \sin\left(\frac{2n\pi t}{T}\right) \right\}.$$

If we use the angular frequency

$$\omega_0 = \frac{2\pi}{T}$$

we obtain the more concise form

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t).$$

We have seen that the Fourier coefficients are calculated using the following integrals:

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos n\omega_0 t \, dt \qquad n = 0, 1, 2, \dots$$
(1)

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin n\omega_0 t \, dt \qquad n = 1, 2, \dots$$
(2)

An alternative, more concise form, of a Fourier series is available using **complex quantities**. This form is quite widely used by engineers, for example in Circuit Theory and Control Theory, and leads naturally into the Fourier Transform which is the subject of HELM 24.

2. Revision of the exponential form of a complex number

Recall that a complex number in Cartesian form which is written as

$$z = a + ib$$
,

where a and b are real numbers and $i^2 = -1$, can be written in **polar** form as

$$z = r(\cos\theta + i\sin\theta)$$

where $r = |z| = \sqrt{a^2 + b^2}$ and θ , the **argument** or **phase** of z, is such that

$$a = r \cos \theta$$
 $b = r \sin \theta$.

A more concise version of the polar form of z can be obtained by defining a **complex exponential** quantity $e^{i\theta}$ by Euler's relation

$$e^{\mathbf{i}\theta} \equiv \cos\theta + \mathbf{i}\sin\theta$$

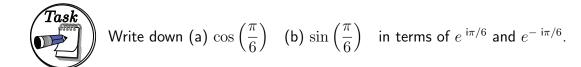
The polar angle θ is normally expressed in **radians**. Replacing i by -i we obtain the alternative form

 $e^{-\mathrm{i}\theta} \equiv \cos\theta - \mathrm{i}\sin\theta$

Write down in $\cos\theta \pm i \sin\theta$ form and also in Cartesian form (a) $e^{i\pi/6}$ (b) $e^{-i\pi/6}$.

Use Euler's relation:

Your solution Answer We have, by definition, (a) $e^{i\pi/6} = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ (b) $e^{-i\pi/6} = \cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}i$



Your solution Answer We have, adding the two results from the previous task $e^{i\pi/6} + e^{-i\pi/6} = 2\cos\left(\frac{\pi}{6}\right)$ or $\cos\left(\frac{\pi}{6}\right) = \frac{1}{2}\left(e^{i\pi/6} + e^{-i\pi/6}\right)$ Similarly, subtracting the two results, $e^{i\pi/6} - e^{-i\pi/6} = 2i\sin\left(\frac{\pi}{6}\right)$ or $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2i}\left(e^{i\pi/6} - e^{-i\pi/6}\right)$ (Don't forget the factor i in this latter case.) Clearly, similar calculations could be carried out for any angle θ . The general results are summarised in the following Key Point. $\begin{array}{l} & \quad \textbf{Key Point 8} \\ & \quad \textbf{Euler's Relations} \\ e^{i\theta} & \equiv & \cos\theta + i\sin\theta, \qquad e^{-i\theta} \equiv \cos\theta - i\sin\theta \\ \cos\theta & \equiv & \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) \qquad \sin\theta \equiv \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) \end{array}$

Using these results we can redraft an expression of the form

 $a_n \cos n\theta + b_n \sin n\theta$

in terms of complex exponentials.

(This expression, with $\theta = \omega_0 t$, is of course the n^{th} harmonic of a trigonometric Fourier series.)

Using the results from the Key Point 8 (with $n\theta$ instead of θ) rewrite $a_n \cos n\theta + b_n \sin n\theta$

in complex exponential form.

First substitute for $\cos n\theta$ and $\sin n\theta$ with exponential expressions using Key Point 8:

Your solution
Answer
We have

$$a_n \cos n\theta = \frac{a_n}{2} \left(e^{in\theta} + e^{-in\theta} \right)$$
 $b_n \sin n\theta = \frac{b_n}{2i} \left(e^{in\theta} - e^{-in\theta} \right)$
so
 $a_n \cos n\theta + b_n \sin n\theta = \frac{a_n}{2} \left(e^{in\theta} + e^{-in\theta} \right) + \frac{b_n}{2i} \left(e^{in\theta} - e^{-in\theta} \right)$

Now collect the terms in $e^{in\theta}$ and in $e^{-in\theta}$ and use the fact that $\frac{1}{i} = -i$:

Your solution

Answer

We get

$$\frac{1}{2}\left(a_n + \frac{b_n}{i}\right)e^{in\theta} + \frac{1}{2}\left(a_n - \frac{b_n}{i}\right)e^{-in\theta}$$

or, since $\frac{1}{i} = \frac{i}{i^2} = -i$ $\frac{1}{2}(a_n - ib_n)e^{in\theta} + \frac{1}{2}(a_n + ib_n)e^{-in\theta}$.

Now write this expression in more concise form by defining

$$c_n = \frac{1}{2}(a_n - ib_n)$$
 which has complex conjugate $c_n^* = \frac{1}{2}(a_n + ib_n)$

Write the concise complex exponential expression for $a_n \cos n\theta + b_n \sin n\theta$:

Your solution

Answer

$$a_n \cos n\theta + b_n \sin n\theta = c_n e^{in\theta} + c_n^* e^{-in\theta}$$

Clearly, we can now rewrite the trigonometric Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t) \quad \text{as} \quad \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(c_n e^{in\omega_0 t} + c_n^* e^{-in\omega_0 t} \right)$$
(3)

A neater, and particularly concise, form of this expression can be obtained as follows: Firstly write $\frac{a_0}{2} = c_0$ (which is consistent with the general definition of c_n since $b_0 = 0$). The second term in the summation

$$\sum_{n=1}^{\infty} c_n^* e^{-in\omega_0 t} = c_1^* e^{-i\omega_0 t} + c_2^* e^{-2i\omega_0 t} + \dots$$

can be written, if we define $c_{-n} = c_n^* = \frac{1}{2}(a_n + ib_n)$, as

$$c_{-1}e^{-i\omega_0 t} + c_{-2}e^{-2i\omega_0 t} + c_{-3}e^{-3i\omega_0 t} + \ldots = \sum_{n=-1}^{-\infty} c_n e^{in\omega_0 t}$$

Hence (3) can be written $c_0 + \sum_{n=1}^{\infty} c_n e^{in\omega_0 t} + \sum_{n=-1}^{-\infty} c_n e^{in\omega_0 t}$ or in the very concise form $\sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 t}$.

The **complex Fourier coefficients** c_n can be readily obtained as follows using (1) and (2) for a_n, b_n . Firstly

$$c_0 = \frac{a_0}{2} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$
(4)

For $n = 1, 2, 3, \ldots$ we have

$$c_n = \frac{1}{2}(a_n - ib_n) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)(\cos n\omega_0 t - i\sin n\omega_0 t) dt \quad \text{i.e.} \quad c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-in\omega_0 t} dt \quad (5)$$

Also for $n = 1, 2, 3, \ldots$ we have

$$c_{-n} = c_n^* = \frac{1}{2}(a_n + ib_n) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{in\omega_0 t} dt$$

This last expression is equivalent to stating that for $n = -1, -2, -3, \ldots$

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-in\omega_0 t} dt$$
(6)

The three equations (4), (5), (6) can thus all be contained in the one expression

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-in\omega_0 t} dt$$
 for $n = 0, \pm 1, \pm 2, \pm 3, ...$

The results of this discussion are summarised in the following Key Point.

Fourier Series in Complex Form

A function f(t) of period T has a complex Fourier series

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 t} \qquad \text{where} \qquad c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-in\omega_0 t} dt$$

For the special case $T=2\pi,$ so that $\omega_0=1,$ these formulae become particularly simple:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}$$
 $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$

3. Properties of the complex Fourier coefficients

Using properties of the trigonometric Fourier coefficients a_n , b_n we can readily deduce the following results for the c_n coefficients:

- 1. $c_0 = \frac{a_0}{2}$ is always real.
- 2. Suppose the periodic function f(t) is even so that all b_n are zero. Then, since in the complex form the b_n arise as the imaginary part of c_n , it follows that for f(t) even the coefficients c_n $(n = \pm 1, \pm 2, ...)$ are wholly real.

If f(t) is odd, what can you deduce about the Fourier coefficients c_n ?

Your solution

Answer

Since, for an odd periodic function the Fourier coefficients a_n (which constitute the real part of c_n) are zero, then in this case the complex coefficients c_n are wholly imaginary.

3. Since

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-in\omega_0 t} dt$$

then if f(t) is even, c_n will be real, and we have two possible methods for evaluating c_n :

(a) Evaluate the integral above **as it stands** i.e. over the full range $\left(-\frac{T}{2}, \frac{T}{2}\right)$. Note carefully that the second term in the integrand is neither an even nor an odd function so the integrand itself is

(even function) \times (neither even nor odd function) = neither even nor odd function.

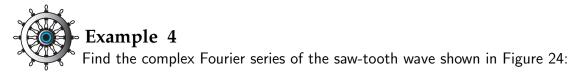
Thus we cannot write
$$c_n = \frac{2}{T} \int_0^{T/2} f(t) e^{-in\omega_0 t} dt$$

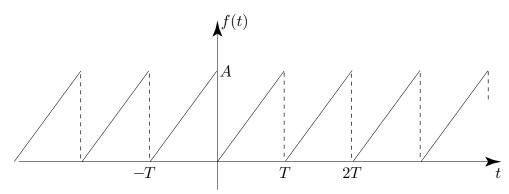
(b) Put $e^{-in\omega_0 t} = \cos n\omega_0 t - i \sin n\omega_0 t$ so

$$f(t)e^{-in\omega_0 t} = f(t)\cos n\omega_0 t - if(t)\sin n\omega_0 t = (\text{ even})(\text{ even}) - i(\text{ even})(\text{ odd})$$
$$= (\text{ even}) - i(\text{ odd}).$$

Hence
$$c_n = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) \cos n\omega_0 t \, dt = \frac{a_n}{2}.$$

4. If $f(t + \frac{T}{2}) = -f(t)$ then of course only **odd** harmonic coefficients $c_n (n = \pm 1, \pm 3, \pm 5, ...)$ will arise in the complex Fourier series just as with trigonometric series.





Solution

We have

$$f(t) = \frac{At}{T} \qquad 0 < t < T \qquad f(t+T) = f(t)$$

The period is T in this case so $\omega_0 = \frac{2\pi}{T}$.

Looking at the graph of f(t) we can say immediately

(a) the Fourier series will contain a constant term c_0

(b) if we imagine shifting the horizontal axis up to $\frac{A}{2}$ the signal can be written

 $f(t) = \frac{A}{2} + g(t)$, where g(t) is an odd function with complex Fourier coefficients that are purely imaginary.

Hence we expect the required complex Fourier series of f(t) to contain a constant term $\frac{A}{2}$ and complex exponential terms with purely imaginary coefficients. We have, from the general theory, and using 0 < t < T as the basic period for integrating,

$$c_{n} = \frac{1}{T} \int_{0}^{T} \frac{At}{T} e^{-in\omega_{0}t} dt = \frac{A}{T^{2}} \int_{0}^{T} t e^{-in\omega_{0}t} dt$$

We can evaluate the integral using parts:

$$\int_0^T t e^{-\operatorname{i} n\omega_0 t} dt = \left[\frac{t e^{-\operatorname{i} n\omega_0 t}}{(-\operatorname{i} n\omega_0)}\right]_0^T + \frac{1}{\operatorname{i} n\omega_0} \int_0^T e^{-\operatorname{i} n\omega_0 t} dt$$
$$= \frac{T e^{\operatorname{i} n\omega_0 T}}{(-\operatorname{i} n\omega_0)} - \frac{1}{(\operatorname{i} n\omega_0)^2} \left[e^{-\operatorname{i} n\omega_0 t}\right]_0^T$$

Solution (contd.) But $\omega_0 = \frac{2\pi}{T}$ so $e^{-in\omega_0 T} = e^{-in2\pi} = \cos 2n\pi - i \sin 2n\pi$ = 1 - 0 i = 1

Hence the integral becomes

$$\frac{T}{-\operatorname{i} n\omega_0} - \frac{1}{(\operatorname{i} n\omega_0)^2} \left(e^{-\operatorname{i} n\omega_0 T} - 1 \right)$$

Hence

$$c_n = \frac{A}{T^2} \left(\frac{T}{-in\omega_0} \right) = \frac{iA}{2\pi n} \qquad n = \pm 1, \pm 2, \dots$$

Note that

$$c_{-n} = \frac{\mathrm{i}A}{2\pi(-n)} = \frac{-\mathrm{i}A}{2\pi n} = c_n^* \quad \text{as it must}$$

Also
$$c_0 = \frac{1}{T} \int_0^T \frac{At}{T} dt = \frac{A}{2}$$
 as expected.

Hence the required complex Fourier series is

$$f(t) = \frac{A}{2} + \frac{iA}{2\pi} \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{e^{in\omega_0 t}}{n}$$

which could be written, showing only the constant and the first two harmonics, as

$$f(t) = \frac{A}{2\pi} \left\{ \dots - i\frac{e^{-i2\omega_0 t}}{2} - ie^{-i\omega_0 t} + \pi + ie^{-i\omega_0 t} + i\frac{e^{-i2\omega_0 t}}{2} + \dots \right\}$$

The corresponding trigonometric Fourier series for the function can be readily obtained from this complex series by combining the terms in $\pm n$, n = 1, 2, 3, ...For example this first harmonic is

$$\frac{A}{2\pi} \left\{ -ie^{-i\omega_0 t} + ie^{i\omega_0 t} \right\} = \frac{A}{2\pi} \left\{ -i(\cos\omega_0 t - i\sin\omega_0 t) + i(\cos\omega_0 t + i\sin\omega_0 t) \right\}$$
$$= \frac{A}{2\pi} (-2\sin\omega_0 t) = -\frac{A}{\pi} \sin\omega_0 t$$

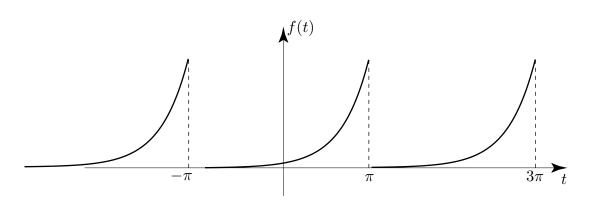
Performing similar calculations on the other harmonics we obtain the trigonometric form of the Fourier series

$$f(t) = \frac{A}{2} - \frac{A}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\omega_0 t}{n}.$$

Find the complex Fourier series of the periodic function:

$$f(t) = e^t \qquad -\pi < t < \pi$$

$$f(t+2\pi) = f(t)$$



Firstly write down an integral expression for the Fourier coefficients c_n :

Your solution Answer We have, since $T = 2\pi$, so $\omega_0 = 1$ $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^t e^{-int} dt$

Now combine the real exponential and the complex exponential as one term and carry out the integration:

Your solution

Answer

We have

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(1-in)t} dt = \frac{1}{2\pi} \left[\frac{e^{(1-in)t}}{(1-in)} \right]_{-\pi}^{\pi} = \frac{1}{2\pi} \frac{1}{(1-in)} \left(e^{(1-in)\pi} - e^{-(1-in)\pi} \right)$$

Now simplify this as far as possible and write out the Fourier series:

Your solution

Answer

$$e^{(1-in)\pi} = e^{\pi} \ e^{-in\pi} = e^{\pi}(\cos n\pi - i\sin n\pi) = e^{\pi}\cos n\pi$$

$$e^{-(1-in)\pi} = e^{-\pi}e^{in\pi} = e^{-\pi}\cos n\pi$$
Hence $c_n = \frac{1}{2\pi}\frac{1}{(1-in)}(e^{\pi} - e^{-\pi})\cos n\pi = \frac{\sinh \pi}{\pi}\frac{(1+in)}{(1+n^2)}\cos n\pi$
Note that the coefficients $c_n \ n = \pm 1, \pm 2, \ldots$ have both real and imaginary parts in this case as the function being expanded is neither even nor odd.
Also $c_{-n} = \frac{\sinh \pi}{\pi}\frac{(1-in)}{(1+(-n)^2)}\cos(-n\pi) = \frac{\sinh \pi}{\pi}\frac{(1-in)}{(1+n^2)}\cos n\pi = c_n^*$ as required.
This includes the constant term $c_0 = \frac{\sinh \pi}{\pi}$. Hence the required Fourier series is

$$f(t) = \frac{\sinh \pi}{\pi} \sum_{n = -\infty}^{\infty} (-1)^n \frac{(1+in)}{(1+n^2)} e^{int} \qquad \text{since} \quad \cos n\pi = (-1)^n.$$

4. Parseval's theorem

This is essentially a mathematical theorem but has, as we shall see, an important engineering interpretation particularly in electrical engineering. Parseval's theorem states that if f(t) is a periodic function with period T and if c_n $(n = 0, \pm 1, \pm 2, ...)$ denote the complex Fourier coefficients of f(t), then

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) \, dt = \sum_{n=-\infty}^{\infty} |c_n|^2.$$

In words the theorem states that the mean square value of the signal f(t) over one period equals the sum of the squared magnitudes of all the complex Fourier coefficients.

Proof of Parseval's theorem.

Assume f(t) has a complex Fourier series of the usual form:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 t} \qquad \left(\omega_0 = \frac{2\pi}{T}\right)$$

where

$$c_{n} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-in\omega_{0}t} dt$$

Then

$$f^{2}(t) = f(t)f(t) = f(t)\sum c_{n}e^{\operatorname{i} n\omega_{0}t} = \sum c_{n}f(t)e^{\operatorname{i} n\omega_{0}t}$$

Hence

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sum c_n f(t) e^{in\omega_0 t} dt$$
$$= \frac{1}{T} \sum c_n \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{in\omega_0 t} dt$$
$$= \sum c_n c_n^*$$
$$= \sum_{n=-\infty}^{\infty} |c_n|^2$$

which completes the proof.

Parseval's theorem can also be written in terms of the Fourier coefficients a_n, b_n of the trigonometric Fourier series. Recall that

$$c_0 = \frac{a_0}{2}$$
 $c_n = \frac{a_n - ib_n}{2}$ $n = 1, 2, 3, \dots$ $c_n = \frac{a_n + ib_n}{2}$ $n = -1, -2, -3, \dots$

so

$$|c_n|^2 = \frac{a_n^2 + b_n^2}{4}$$
 $n = \pm 1, \pm 2, \pm 3, \dots$

so

$$\sum_{n=-\infty}^{\infty} |c_n|^2 = \frac{a_0^2}{4} + 2\sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{4}$$

and hence Parseval's theorem becomes

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) dt = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$
(7)

The engineering interpretation of this theorem is as follows. Suppose f(t) denotes an electrical signal (current or voltage), then from elementary circuit theory $f^2(t)$ is the instantaneous power (in a 1 ohm resistor) so that

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) \, dt$$

is the energy dissipated in the resistor during one period. Now a sinusoid wave of the form

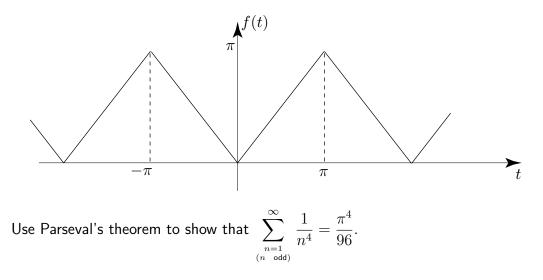
$$A\cos\omega t$$
 (or $A\sin\omega t$)

has a mean square value $\frac{A^2}{2}$ so a purely sinusoidal signal would dissipate a power $\frac{A^2}{2}$ in a 1 ohm resistor. Hence Parseval's theorem in the form (7) states that the average power dissipated over 1 period equals the sum of the powers of the constant (or d.c.) components and of all the sinusoidal (or alternating) components.

The triangular signal shown below has trigonometric Fourier series

$$f(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{\substack{n=1\\ (\text{ odd } n)}}^{\infty} \frac{\cos nt}{n^2}.$$

[This was deduced in the Task in Section 23.3, page 39.]



First, identify a_0 , a_n and b_n for this situation and write down the definition of f(t) for this case:

Your solution

Answer We have $\frac{a_0}{2} = \frac{\pi}{2}$ $a_n = \begin{cases} -\frac{4}{n^2 \pi} & n = 1, 3, 5, \dots \\ 0 & n = 2, 4, 6, \dots \end{cases}$ $b_n = 0 & n = 1, 2, 3, 4, \dots$ Also $f(t) = |t| & -\pi < t < \pi$ $f(t + 2\pi) = f(t)$

Now evaluate the integral on the left hand side of Parseval's theorem and hence complete the problem:

Your solution

Answer We have $f^2(t) = t^2$ so $\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} t^2 dt = \frac{1}{2\pi} \left[\frac{t^3}{3} \right]_{-\pi}^{\pi} = \frac{\pi^2}{3}$ The right-hand side of Parseval's theorem is $\frac{a_0^2}{4} + \sum_{n=1}^{\infty} a_n^2 = \frac{\pi^2}{4} + \frac{1}{2} \sum_{\substack{n=1 \ (n \text{ odd})}}^{\infty} \frac{16}{n^4 \pi^2}$

Hence

$$\frac{\pi^2}{3} = \frac{\pi^2}{4} + \frac{8}{\pi^2} \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{1}{n^4} \qquad \therefore \qquad \frac{8}{\pi^2} \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{1}{n^4} = \frac{\pi^2}{12} \qquad \therefore \qquad \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{96}.$$

Exercises

Obtain the complex Fourier series for each of the following functions of period 2π .

1. f(t) = t $-\pi \le t \le \pi$ 2. f(t) = t $0 \le t \le 2\pi$ 3. $f(t) = e^t$ $-\pi \le t \le \pi$

Answers

1.
$$i \sum \frac{(-1)^n}{n} e^{int}$$
 (sum from $-\infty$ to ∞ excluding $n = 0$).
2. $\pi + i \sum \frac{1}{n} e^{int}$ (sum from $-\infty$ to ∞ excluding $n = 0$).
3. $\frac{\sinh \pi}{\pi} \sum (-1)^n \frac{(1+in)}{(1+n^2)} e^{int}$ (sum from $-\infty$ to ∞).