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Introduction
In this Section we look at a typical application of Fourier series. The problem we study is that of a
differential equation with a periodic (but non-sinusoidal) forcing function. The differential equation
chosen models a lightly damped vibrating system.
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Prerequisites
Before starting this Section you should . . .

• know how to obtain a Fourier series

• be competent to use complex numbers

• be familiar with the relation between the
exponential function and the trigonometric
functions�

�
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�
Learning Outcomes

On completion you should be able to . . .

• solve a linear differential equation with a
periodic forcing function using Fourier series

68 HELM (2008):
Workbook 23: Fourier Series



®

1. Modelling vibration by differential equation
Vibration problems are often modelled by ordinary differential equations with constant coefficients.
For example the motion of a spring with stiffness k and damping constant c is modelled by

m
d2y

dt2
+ c

dy

dt
+ ky = 0 (1)

where y(t) is the displacement of a mass m connected to the spring. It is well-known that if c2 < 4mk,
usually referred to as the lightly damped case, then

y(t) = e−αt(A cos ωt + B sin ωt) (2)

i.e. the motion is sinusoidal but damped by the negative exponential term. In (2) we have used the
notation

α =
c

2m
ω =

1

2m

√
4km− c2 to simplify the equation.

The values of A and B depend upon initial conditions.

The system represented by (1), whose solution is (2), is referred to as an unforced damped har-
monic oscillator.

A lightly damped oscillator driven by a time-dependent forcing function F (t) is modelled by the
differential equation

m
d2y

dt2
+ c

dy

dt
+ ky = F (t) (3)

The solution or system response in (3) has two parts:

(a) A transient solution of the form (2),

(b) A forced or steady state solution whose form, of course, depends on F (t).

If F (t) is sinusoidal such that

F (t) = A sin(Ωt + φ) where Ω and φ are constants,

then the steady state solution is fairly readily obtained by standard techniques for solving differential
equations. If F (t) is periodic but non-sinusoidal then Fourier series may be used to obtain the steady
state solution. The method is based on the principle of superposition which is actually applicable
to any linear (homogeneous) differential equation. (Another engineering application is the series
LCR circuit with an applied periodic voltage.)

The principle of superposition is easily demonstrated:-
Let y1(t) and y2(t) be the steady state solutions of (3) when F (t) = F1(t) and F (t) = F2(t)
respectively. Then

m
d2y1

dt2
+ c

dy1

dt
+ ky1 = F1(t)

m
d2y2

dt2
+ c

dy2

dt
+ ky2 = F2(t)

Simply adding these equations we obtain

m
d2

dt2
(y1 + y2) + c

d

dt
(y1 + y2) + k(y1 + y2) = F1(t) + F2(t)
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from which it follows that if F (t) = F1(t)+F2(t) then the system response is the sum y1(t)+ y2(t).
This, in its simplest form, is the principle of superposition. More generally if the forcing function is

F (t) =
N∑

n=1

Fn(t)

then the response is y(t) =
N∑

n=1

yn(t) where yn(t) is the response to the forcing function Fn(t).

Returning to the specific case where F (t) is periodic, the solution procedure for the steady state
response is as follows:

Step 1: Obtain the Fourier series of F (t).

Step 2: Solve the differential equation (3) for the response yn(t) corresponding to the n th har-
monic in the Fourier series. (The response yo to the constant term, if any, in the Fourier
series may have to be obtained separately.)

Step 3: Superpose the solutions obtained to give the overall steady state motion:

y(t) = y0(t) +
N∑

n=1

yn(t)

The procedure can be lengthy but the solution is of great engineering interest because if the frequency

of one harmonic in the Fourier series is close to the natural frequency

√
k

m
of the undamped system

then the response to that harmonic will dominate the solution.

2. Applying Fourier series to solve a differential equation
The following Task which is quite long will provide useful practice in applying Fourier series to a
practical problem. Essentially you should follow Steps 1 to 3 above carefully.

Task

The problem is to find the steady state response y(t) of a spring/mass/damper
system modelled by

m
d2y

dt2
+ c

dy

dt
+ ky = F (t) (4)

where F (t) is the periodic square wave function shown in the diagram.

−t0 t0 t

− F0

F0

F (t)
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Step 1: Obtain the Fourier series of F (t) noting that it is an odd function:

Your solution

Answer
The calculation is similar to those you have performed earlier in this Workbook.

Since F (t) is an odd function and has period 2t0 so that ω =
2π

2t0
=

π

t0
, it has Fourier coefficients:

bn =
2

t0

∫ to

0

F0 sin

(
nπt

t0

)
dt n = 1, 2, 3, . . .

=

(
2F0

t0

) (
t0
nπ

) [
− cos

nπt

t0

]t0

0

=
2F0

nπ
(1− cos nπ) =

{
4F0

nπ
n odd

0 n even

so F (t) =
4F0

π

∞∑
n=1

sin nωt

n
(where the sum is over odd n only).

Step 2(a):
Since each term in the Fourier series is a sine term you must now solve (4) to find the steady state
response yn to the n th harmonic input: Fn(t) = bn sin nωt n = 1, 3, 5, . . .

From the basic theory of linear differential equations this response has the form

yn = An cos nωt + Bn sin nωt (5)

where An and Bn are coefficients to be determined by substituting (5) into (4) with F (t) = Fn(t).
Do this to obtain simultaneous equations for An and Bn:
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Your solution

Answer
We have, differentiating (5),

y′n = nω(−An sin nωt + Bn cos nωt)

y′′n = (nω)2(−An cos nωt−Bn sin nωt)

from which, substituting into (4) and collecting terms in cos nωt and sin nωt,

(−m(nω)2An + cnωBn + kAn) cos nωt + (−m(nω)2Bn − cnωAn + kBn) sin nωt = bn sin nωt

Then, by comparing coefficients of cos nωt and sin nωt, we obtain the simultaneous equations:

(k −m(nω)2)An + c(nω)Bn = 0 (6)

−c(nω)An + (k −m(nω)2)Bn = bn (7)

Step 2(b):
Now solve (6) and (7) to obtain An and Bn:

Your solution
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Answer

An = − cωnbn

(k −mω2
n)2 + ω2

nc
2

(8)

Bn =
(k −mω2

n)bn

(k −mω2
n)2 + ω2

nc
2

(9)

where we have written ωn for nω as the frequency of the n th harmonic

It follows that the steady state response yn to the n th harmonic of the Fourier series of the forcing
function is given by (5). The amplitudes An and Bn are given by (8) and (9) respectively in terms of
the systems parameters k, c, m, the frequency ωn of the harmonic and its amplitude bn. In practice
it is more convenient to represent yn in the so-called amplitude/phase form:

yn = Cn sin(ωnt + φn) (10)

where, from (5) and (10),

An cos ωnt + Bn sin ωnt = Cn(cos φn sin ωnt + sin φn cos ωnt).

Hence

Cn sin φn = An Cn cos φn = Bn

so

tan φn =
An

Bn

=
cωn

(mω2
n − k)2

(11)

Cn =
√

A2
n + B2

n =
bn√

(mω2
n − k)2 + ω2

nc
2

(12)

Step 3:

Finally, use the superposition principle, to state the complete steady state response of the system to
the periodic square wave forcing function:

Your solution

Answer

y(t) =
∞∑

n=1

yn(t) =
∑
n=1

(n odd)

Cn(sin ωnt + φn) where Cn and φn are given by (11) and (12).

In practice, since bn =
4F0

nπ
it follows that the amplitude Cn also decreases as

1

n
. However, if one of

the harmonic frequencies say ω′n is close to the natural frequency

√
k

m
of the undamped oscillator

then that particular frequency harmonic will dominate in the steady state response. The particular
value ω′n will, of course, depend on the values of the system parameters k and m.
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