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Introduction
A partial differential equation (PDE) is a differential equation involving partial derivatives of one
dependent variable with respect to two or more independent variables. The independent variables
may be space variables only or one or more space variables and time. Mathematical modelling of
many situations involving natural phenomena leads to PDEs.

The subject of PDEs is a very large one. We shall discuss only a few special PDEs which model a
wide range of applied problems.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be able to carry out partial differentiation

• be able to solve constant coefficient ordinary
differential equations�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• verify solutions of given partial differential
equations arising in engineering and science
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1. Introduction
You have already studied ordinary differential equations (ODEs) and have learnt how to obtain the
solution of certain types. Since a knowledge of the solution of certain ODEs (i.e. those with constant
coefficients) will be required in solving partial differential equations (PDEs), we will begin this unit
reminding you of some important results.

Key Point 1

The first order ODE
dy

dx
= ky

has general solution
y = Aekx

Here k is a constant which can be positive or negative and A is an arbitrary constant.

In Key Point 1 the quantity A in the general solution is a constant. To obtain the value of A we
have to know the value of y at some value of x, perhaps x = 0. In other words, we need to know an
initial condition.

Task

Find y as a function of x if

dy

dx
= −2y

and the initial condition is y(0) = 3.

Your solution

Answer
From Key Point 1 with k = −2 we have the general solution

y = Ae−2x

Putting x = 0 and y = 3 into this we obtain 3 = Ae0 i.e. A = 3 so the solution to the given initial
value problem is

y = 3e−2x
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We shall also need to be familiar with solutions to second order, homogeneous, constant coefficient
ODEs, summarised in Key Point 2.

Key Point 2

A second order ODE of the form

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (1)

where a, b, c are constants, has an auxiliary equation

am2 + bm + c = 0 (2)

obtained by inserting the trial solution y = emx in (1).

The general solution of (1) then depends on the solutions (or roots) of the quadratic equation (2).

(a) If (2) has real, distinct roots m = m1 and m = m2 then

y = Aem1x + Bem2x

(b) If (2) has a repeated root m = m1 then

y = (A + Bx)em1x

(c) If (2) has complex roots (which will be a conjugate pair) m = α± jβ then

y = eαx(A cos βx + B sin βx)

Note that in each of these cases (a) to (c) the general solution is a linear combination of two
particular solutions:

For (a) they are em1x and em2x.

For (b) they are em1x and xem1x.

For (c) they are eαx cos βx and eαx sin βx.

Task

Use Key Point 2 to find the general solution of
d2y

dx2
− 4y = 0.

First write down the auxiliary equation:

Your solution
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Answer

m2 − 4 = 0

Now find the roots of the auxiliary equation:

Your solution

Answer

m = ±2

Finally give the general solution to the ODE:

Your solution

Answer

y = Ae2x + Be−2x (Since the roots of the auxiliary equation are real and distinct.)

Task

Find the general solution of
d2y

dx2
+ 9y = 0

First write down the auxiliary equation:

Your solution

Answer

m2 + 9 = 0

Now Find the roots of this auxiliary equation:

Your solution

Answer

m = ±3i

Finally give the general solution to the ODE:

Your solution
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Answer
y = A cos 3x + B sin 3x

(Since the roots of the auxiliary equation are complex conjugates with real part α = 0 and imaginary
part β = 3.)

The two Tasks above can be generalised as in Key Point 3.

Key Point 3

(1) The general solution to:
d2y

dx2
− n2y = 0 is

y = Aenx + Be−nx

or, equivalently using hyperbolic functions,

y = C cosh nx + D sinh nx

(2) The general solution to:
d2y

dx2
+ n2y = 0 is

y = A cos nx + B sin nx

Those of you who are familiar with elementary dynamics will recognise the second differential equation
in Key Point 3 as modelling simple harmonic motion.

2. Partial differential equations
In all the above examples we had a function y of a single variable x, y being the solution of an
ordinary differential equation.

In engineering and science ODEs arise as models for systems where there is one independent variable
(often x) and one dependent variable (often y). Obvious examples are lumped electrical circuits
where the current i is a function only of time t (and not of position in the circuit) and lumped
mechanical systems (such as the simple harmonic oscillator referred to above) where the displacement
of a moving particle depends only on t.

However, in problems where one variable, say u, depends on more than one independent variable,

say both x and t, then any derivatives of u will be partial derivatives such as
∂u

∂x
or

∂2u

∂t2
and any

differential equation arising will be known as a partial differential equation. In particular, one-
dimensional (1-D) time-dependent problems where u depends on a position coordinate x and the time
t and two-dimensional (2-D) time-independent problems where u is a function of the two position
coordinates x and y both give rise to PDEs involving two independent variables. This is the case
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we shall concentrate on. A two-dimensional time-dependent problem would involve 3 independent
variables x, y, t as would a three-dimensional time-independent problem where x, y, z would be the
independent variables.

Example 1
Show that u = sin x cosh y satisfies the PDE

∂2u

∂x2
+

∂2u

∂y2
= 0.

This PDE is known as Laplace’s equation in two dimensions and it arises in
many applications e.g. electrostatics, fluid flow, heat conduction.

Solution

u = sin x cosh y ⇒ ∂u

∂x
= cos x cosh y and

∂u

∂y
= sin x sinh y

Differentiating again gives
∂2u

∂x2
= − sin x cosh y and

∂2u

∂y2
= sin x cosh y

Hence

∂2u

∂x2
+

∂2u

∂y2
= − sin x cosh y + sin x cosh y = 0

so the given function u(x, y) is indeed a solution of the PDE.

Task

Show that u = e−2π2t sin πx is a solution of the PDE
∂2u

∂x2
=

1

2

∂u

∂t

First find
∂u

∂t
and

∂u

∂x
:

Your solution

Answer
∂u

∂t
= −2π2e−2π2t sin πx

∂u

∂x
= πe−2π2t cos πx

Now find
∂2u

∂x2
and complete the Task:

Your solution

Answer
∂2u

∂x2
= −π2e−2π2t sin πx, and we see that

∂2u

∂x2
=

1

2

∂u

∂t
as required.

HELM (2008):
Section 25.1: Partial Differential Equations

7



The PDE in the above Task has the general form

∂2u

∂x2
=

1

k

∂u

∂t

where k is a positive constant. This equation is referred to as the one-dimensional heat conduction
equation (or sometimes as the diffusion equation). In a heat conduction context the dependent
variable u represents the temperature u(x, t).

The third important PDE involving two independent variables is known as the one-dimensional
wave equation. This has the general form

∂2u

∂x2
=

1

c2

∂2u

∂t2

(Note that both partial derivatives in the wave equation are second-order in contrast to the heat
conduction equation where the time derivative is first order.)

Example 2
(a) Verify that u(x, t) = u0 sin

(πx

`

)
cos

(
πct

`

)
(where u0, ` and c are

constants) satisfies the one-dimensional wave equation.

(b) Verify the boundary conditions i.e. u(0, t) = u(`, t) = 0.

(c) Verify the initial conditions i.e.
∂u

∂t
(x, 0) = 0 and u(x, 0) = u0 sin

(πx

`

)
.

(d) Give a physical interpretation of this problem.

Solution

(a) By straightforward partial differentiation of the given function u(x, t):

∂u

∂x
= u0

π

`
cos

(πx

`

)
cos

(
πct

`

)
∂2u

∂x2
= −u0

(π

`

)2

sin
(πx

`

)
cos

(
πct

`

)
∂u

∂t
= −u0

(πc

`

)
sin

(πx

`

)
sin

(
πct

`

)
∂2u

∂t2
= −u0

(πc

`

)2

sin
(πx

`

)
cos

(
πct

`

)

We see that
∂2u

∂x2
=

1

c2

∂2u

∂t2
which completes the verification.

(b) Putting x = 0, and leaving t arbitrary, in the given solution for u(x, t) gives

u(x, 0) = u0 sin 0 cos

(
πct

`

)
= 0 for all t

Similarly putting x = `, t arbitrary: u(`, 0) = u0 sin π cos

(
πct

`

)
= 0 for all t
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Solution

(c) Evaluating
∂u

∂t
firstly for general x and t

∂u

∂t
= −u0

(πc

`

)
sin

(πx

`

)
sin

(
πct

`

)
Now putting t = 0 leaving x arbitrary

∂u

∂t
(x, 0) = −u0

(πc

`

)
sin

(πx

`

)
sin 0 = 0.

Also, putting t = 0 in the expression for u(x, t) gives

u(x, 0) = u0 sin
(πx

`

)
cos 0 = u0 sin

(πx

`

)
.

(d) Mathematically we have now proved that the given function u(x, t) satisfies the 1-D wave equa-
tion specified in (a), the two boundary conditions specified in (b) and the two initial conditions
specified in (c).

One possible physical interpretation of this problem is that u(x, t) represents the displacement of a
string stretched between two points at x = 0 and x = `. Clearly the position of any point P on the
vibrating string will depend upon its distance x from one end and on the time t.

The boundary conditions (b) represent the fact that the string is fixed at these end-points.

The initial condition u(x, 0) = u0 sin
(πx

`

)
represents the displacement of the string at t = 0.

The initial condition
∂u

∂t
(x, 0) = 0 tells us that the string is at rest at t = 0.

t = 0

t = 1.5

t increasing

�0

u

x

P

u(x, t)

x

Figure 1

Note that it can be proved formally that if T is the tension in the string and if ρ is the mass per
unit length of the string then u does, under certain conditions, satisfy the 1-D wave equation with

c2 =
T

ρ
.
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Key Point 4

The three PDEs of greatest general interest involving two independent variables are:

(a) The two-dimensional Laplace equation

∂2u

∂x2
+

∂2u

∂y2
= 0

(b) The one-dimensional heat conduction equation:

∂2u

∂x2
=

1

k

∂u

∂t

(c) The one-dimensional wave equation:

∂2u

∂x2
=

1

c2

∂2u

∂t2
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