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Fourier Series

�
�

�
�25.4

Introduction
In this Section we continue to use the separation of variables method for solving PDEs but you will
find that, to be able to fit certain boundary conditions, Fourier series methods have to be used leading
to the final solution being in the (rather complicated) form of an infinite series. The techniques will be
illustrated using the two-dimensional Laplace equation but similar situations often arise in connection
with other important PDEs.
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�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with the separation of variables
method

• be familiar with trigonometric Fourier series�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• solve the 2-D Laplace equation for given
boundary conditions and utilize Fourier series
in the solution when necessary
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1. Solutions involving infinite Fourier series
We shall illustrate this situation using Laplace’s equation but infinite Fourier series can also be
necessary for the heat conduction and wave equations.

We recall from the previous Section that using a product solution

u(x, t) = X(x)Y (y)

in Laplace’s equation gives rise to the ODEs:

X ′′

X
= K

Y ′′

Y
= −K

To determine the sign of K and hence the appropriate solutions for X(x) and Y (y) we must impose
appropriate boundary conditions. We will investigate solving Laplace’s equation in the square

0 ≤ x ≤ ` 0 ≤ y ≤ `

for the boundary conditions u(x, 0) = 0 u(0, y) = 0 u(`, y) = 0 u(x, `) = U0, a constant.

See Figure 7.
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Figure 7

(a) We must first deduce the sign of the separation constant K:

if K is chosen to be positive say K = λ2, then the X equation is

X ′′ = λ2X

with general solution

X = Aeλx + Be−λx

while the Y equation becomes

Y ′′ = −λ2Y

with general solution

Y = C cos λy + D sin λy

If the sign of K is negative K = −λ2 the solutions will change to trigonometric in x and exponential
in y.

These are the only two possibilities when we solve Laplace’s equation using separation of variables
and we must look at the boundary conditions of the problem to decide which is appropriate.
Here the boundary conditions are periodic in x (since u(0, y) = u(`, y)) and non-periodic in y which
suggests we need a solution that is periodic in x and non-periodic in y.
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Thus we choose K = −λ2 to give

X(x) = (A cos λx + B sin λx)

Y (y) = (Ceλy + De−λy)

(Note that had we chosen the incorrect sign for K at this stage we would later have found it impossible
to satisfy all the given boundary conditions. You might like to verify this statement.)

The appropriate general solution of Laplace’s equation for the given problem is

u(x, y) = (A cos λx + B sin λx)(Ceλy + De−λy).

(b) Inserting the boundary conditions produces the following consequences:

u(0, y) = 0 gives A = 0

u(`, y) = 0 gives sin λ` = 0 i.e. λ =
nπ

`

where n is a positive integer 1, 2, 3, . . . . While n = 0 also satisfies the equation it leads to the trivial
solution u = 0 only.)

u(x, 0) = 0 gives C + D = 0 i.e. D = −C

At this point the solution can be written

u(x, y) = BC sin
(nπx

`

)(
e

nπy

` − e
−
nπy

`

)
This can be conveniently written as

u(x, y) = E sin
(nπx

`

)
sinh

(nπy

`

)
(1)

where E = 2BC.

At this stage we have just one final boundary condition to insert to obtain information about the
constant E and the integer n. Our solution (1) gives

u(x, `) = E sin
(nπx

`

)
sinh(nπ)

and clearly this is not compatible, as it stands, with the given boundary condition

u(x, `) = U0 = constant.

The way to proceed is again to superpose solutions of the form (1) for all positive integer values of
n to give

u(x, y) =
∞∑

n=1

En sin
(nπx

`

)
sinh

(nπy

`

)
(2)

from which the final boundary condition gives

U0 =
∞∑

n=1

En sin
(nπx

`

)
sinh(nπ) 0 < x < `. (3)

=
∞∑

n=1

bn sin
(nπx

`

)
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What we have here is a Fourier (sine) series for the function

f(x) = U0 0 < x < `.

Recalling the work on half-range Fourier series ( 23.5) we must extend this definition to produce
an odd function with period 2`. Hence we define

f(x) =

{
U0 0 < x < `
−U0 −` < x < 0

f(x + `) = f(x)

illustrated in Figure 8.

x�

U0

− U0

2�− �

f(x)

Figure 8

(c) We can now apply standard Fourier series theory to evaluate the Fourier coefficients bn in (3).

We obtain

bn = En sinh nπ =
4U0

2`

∫ `

0

sin
(nπx

`

)
dx

(Recall that, in general, bn = 2 × the mean value of f(x) sin
(nπx

`

)
over a period. Here, because

f(x) is odd, and hence f(x) sin
(nπx

`

)
is even, we may take half the period for our averaging

process.)

Carrying out the integration

En sinh nπ =
2U0

nπ
(1− cos nπ) i.e. En =


4U0

nπ sinh nπ
n = 1, 3, 5, . . .

0 n = 2, 4, 6, . . .

(Since f(x) is a square wave with half-period symmetry we are not surprised that only odd harmonics
arise in the Fourier series.)

Finally substituting these results for En into (2) we obtain the solution to the given problem as the
infinite series:

u(x, y) =
4U0

π

∞∑
n=1

(n odd)

sin
(nπx

`

)
sinh

(nπy

`

)
n sinh nπ
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Task

Solve Laplace’s equation to determine the steady state temperature u(x, y) in the
semi-infinite plate 0 ≤ x ≤ 1, y ≥ 0. Assume that the left and right sides are
insulated and assume that the solution is bounded. The temperature along the
bottom side is a known function f(x).

First write this problem as a mathematical boundary value problem paying particular attention to the
mathematical representation of the boundary conditions:

Your solution

Answer
Since the sides x = 0 and x = 1 are insulated, the temperature gradient across these sides is zero

i.e.
∂u

∂x
= 0 for x = 0, 0 < y <∞ and

∂u

∂x
= 0 for x = 1, 0 < y <∞.

The third boundary condition is u(x, 0) = f(x).

The fourth boundary condition is less obvious: since the solution should be bounded (ie not grow
and grow) we must demand that u(x, y)→ 0 as y →∞. (See figure below.)

x

∂u

∂x
= 0

u = f(x)0 1

y

∂u

∂x
= 0
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Now use the separation of variables method, putting u(x, y) = X(x)Y (y), to find the differential
equations satisfied by X(x), Y (y) and decide on the sign of the separation constant K:

Your solution

Answer
We have boundary conditions which, like the worked example above, are periodic in x. Hence the
differential equations are, again,

X ′′ = −λ2X Y ′′ = +λ2Y

putting the separation constant K as −λ2.

Write down the solutions for X, for Y and hence the product solution u(x, y) = X(x)Y (y):

Your solution

Answer
X = A cos λx + B sin λx Y = Ceλy + De−λy

so

u = (A cos λx + B sin λx)(Ceλy + De−λy) (4)

Impose the derivative boundary conditions on this solution:

Your solution

40 HELM (2008):
Workbook 25: Partial Differential Equations



®

Answer

∂u

∂x
= (−λA sin λx + λB cos λx)(Ceλy + De−λy)

Hence
∂u

∂x
(0, y) = 0 gives λB(Ceλy + De−λy) = 0 for all y.

The possibility λ = 0 can be excluded this would give a trivial constant solution in (4). Hence we
must choose B = 0.

The condition
∂u

∂x
(1, y) = 0 gives

−λA sin λ(Ceλy + De−λy) = 0

Choosing A = 0 would make u ≡ 0 so we must force sin λ to be zero i.e. choose λ = nπ where n
is a positive integer.

Thus, at this stage (4) becomes

u = A cos nπx(Cenπy + De−nπy)

= cos nπx(Eenπy + Fe−nπy) (5)

Now impose the condition that this solution should be bounded:

Your solution

Answer
The region over which we are solving Laplace’s equation is semi-infinite i.e. the y coordinate
increases without limit. The solution for u(x, y) in (5) will increase without limit as y →∞ due to
the term enπy (n being a positive integer.) This can be avoided i.e. the solution will be bounded if
the constant E is chosen as zero.

Finally, use Fourier series techniques to deal with the final boundary condition u(x, 0) = f(x):

Your solution
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Your solution

Answer
Superposing solutions of the form (5) (with E = 0) gives

u(x, y) =
∞∑

n=0

Fn cos(nπx) e−nπy (6)

so the boundary condition gives

f(x) =
∞∑

n=0

Fn cos nπx

We have here a half-range Fourier cosine series representation of a function f(x) defined over
0 < x < 1. Extending f(x) as an even periodic function with period 2 and using standard Fourier
series theory gives

Fn = 2

∫ 1

0

f(x) cos nπx dx n = 1, 2, . . .

with

F0

2
=

∫ 1

0

f(x) dx.

Hence (6) is the solution of this given boundary value problem, the integrals giving us in principle
the Fourier coefficients Fn for a given function f(x).
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