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Introduction
In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of
certain initial value problems. In this Section we will see that those two methods are special cases of
a more general collection of techniques called linear multistep methods. Techniques for determining
the properties of these methods will be presented.

Another class of approximations, called Runge-Kutta methods, will also be discussed briefly. These
are not linear multistep methods, but the two are sometimes used in conjunction.
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Prerequisites

Before starting this Section you should . . .

• review Section 32.1

'

&
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%

Learning Outcomes
On completion you should be able to . . .

• implement linear multistep methods to carry
out time steps of numerical methods

• evaluate the zero stability of linear multistep
methods

• establish the order of linear multistep
methods

• implement a Runge-Kutta method
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1. General linear multistep methods
Euler’s method and the trapezium method are both special cases of a wider class of so-called linear
multistep methods. The following Key Point gives the most general situation that we will look at.

Key Point 8

The general k-step linear multistep method is given by

αkyn+k + · · ·+ α1yn+1 + α0yn = h
(
βkfn+k + · · ·+ β1fn+1 + β0fn

)
or equivalently

k∑
j=0

αj yn+j = h

k∑
j=0

βj fn+j.

It is always the case that αk 6= 0. Also, at least one of α0 and β0 will be non-zero.

A linear multistep method is defined by the choice of the quantities

k, α0, α1, . . . , αk, β0, β1, . . . , βk

• If βk = 0 the method is called explicit. (Because at each step, when we are trying to find
the newest yn+k, there is no appearance of this unknown on the right-hand side.)

• If βk 6= 0 the method is called implicit. (Because yn+k now appears on both sides of the
equation (on the right-hand side it appears through fn+k = f((n+k)h, yn+k), and we cannot,
in general, rearrange to get an explicit formula for yn+k.)

The next Example shows one such choice.
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Example 5
Write down the linear multistep scheme defined by the choices k = 1, α0 = −1,
α1 = 1, β0 = β1 = 1

2
.

Solution

Here k = 1 so that

α1yn+1 + α0yn = h(β1fn+1 + β0fn)

and substituting the values in for the four coefficients gives

yn+1 − yn = h
(

1
2
fn+1 + 1

2
fn

)
which, as we know, is the trapezium method.

Task

Write down the linear multistep scheme defined by the choices k = 1, α0 = −1,
α1 = 1, β0 = 1 and β1 = 0.

Your solution

Answer
Here k = 1 and we have

α1yn+1 + α0yn = h(β1fn+1 + β0fn)

and substituting the values in for the four coefficients gives

yn+1 − yn = hfn

which, as we know, is Euler’s method.
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Task

Write down the linear multistep scheme defined by the choices k = 2, α0 = 0,
α1 = −1, α2 = 1, β2 = 0, β1 = 3

2
and β0 = −1

2
.

Your solution

Answer
Here k = 2 (so we are looking at a 2-step scheme) and we have

α2yn+1 + α1yn+1 + α0yn = h(β2fn+2 + β1fn+1 + β0fn)

Substituting the values in for the six coefficients gives

yn+2 − yn+1 =
h

2
(3fn+1 − fn)

which is an example of a scheme that is explicit (because βk = β2 is zero).

In the preceding Section we saw several examples implementing the Euler and trapezium methods.

The next Example deals with the explicit 2-step that was the subject of the Task above.

Example 6
A numerical scheme has been used to approximate the solution of

dy

dt
= t + y, y(0) = 3

and has produced the following estimates, to 6 decimal places,

y(0.4) ≈ 4.509822, y(0.45) ≈ 4.755313

Now use the 2-step, explicit linear multistep scheme

yn+2 − yn+1 = h (1.5fn+1 − 0.5fn)

to approximate y(0.5).
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Solution

Evidently the value h = 0.05 will serve our purposes and we seek y10 ≈ y(0.5). The values we will
need to use in our implementation of the 2-step scheme are y9 = 4.755313 and

f9 = f(0.45, y9) = 5.205313 f8 = f(0.4, y8) = 4.909822

to 6 decimal places since f(t, y) = t + y. It follows that

y10 = y9 + 0.05× (1.5f9 − 0.5f8)

= 5.022966

And we conclude that y(0.5) ≈ 5.022966, where this approximation has been given to 6 decimal
places.

Notice that in this implementation of a 2-step method we needed to use the values of the two y
values preceding the one currently being sought. Both y8 and y9 were used in finding y10.

Similarly, a k-step method will use, in general, k previous y values at each time step.

This means that there is an issue to be resolved in implementing methods that are 2- or higher-step,
because when we start we are only given one starting value y0. This issue will be dealt with towards
the end of this Section. The following exercise involves a 2-step method, but (like the example
above) it does not encounter the difficulty relating to starting values as it assumes that the numerical
procedure is already underway.

Task

A numerical scheme has been used to approximate the solution of

dy

dt
= t/y y(0) = −2

and has produced the following estimates, to 6 decimal places,

y(0.24) ≈ −2.013162, y(0.26) ≈ −2.015546

Now use the 2-step, explicit linear multistep scheme

yn+2 − 1
2
yn+1 − 1

2
yn = 3

2
hfn+1

to approximate y(0.28).
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Your solution

Answer
Evidently the value h = 0.02 will serve our purposes and we seek y14 ≈ y(0.28). The values we will
need to use in our implementation of the 2-step scheme are y13 = −2.015546, y12 = −2.013162
and

f13 = f(0.26, y13) = −0.128997

to 6 decimal places since f(t, y) = t/y. It follows that

y14 = 1
2
y13 + 1

2
y12 + 0.02× 3

2
f13

= −2.018224

And we conclude that y(0.28) ≈ −2.018224, to 6 decimal places.

Zero stability

We now begin to classify linear multistep methods. Some choices of the coefficients give rise to
schemes that work well, and some do not. One property that is required if we are to obtain reliable
approximations is that the scheme be zero stable. A scheme that is zero stable will not produce
approximations which grow unrealistically with t.

We define the first characteristic polynomial

ρ(z) = α0 + α1z + α2z
2 + . . . αkz

k

where the αi are the coefficients of the linear multistep method as defined in Key Point 8 (page 21).
This polynomial appears in the definition of zero stability given in the following Key Point.
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Key Point 10

The linear multistep scheme

k∑
j=0

αj yn+j = h

k∑
j=0

βj fn+j.

is said to be zero stable if the zeros of the first characteristic polynomial are such that

1. none is larger than 1 in magnitude

2. any zero equal to 1 in magnitude is simple (that is, not repeated)

The second characteristic polynomial is defined in terms of the coefficients on the right-hand
side (the βj), but its use is beyond the scope of this Workbook.

Example 7
Find the roots of the first characteristic polynomial for each of the examples below
and determine whether or not the method is zero stable.

(a) yn+1 − yn = hfn

(b) yn+1 − 2yn = hfn

(c) yn+2 + 3yn+1 − 4yn = h (2fn+2 + fn+1 + 2fn)

(d) yn+2 − yn+1 = 3
2
hfn+1

(e) yn+2 − 2yn+1 + yn = h(fn+2 − fn)

(f) yn+2 + 2yn+1 + 5yn = h (fn+2 − fn+1 + 2fn)

Solution

(a) In this case ρ(z) = z − 1 and the single zero of ρ is z = 1. This is a simple (that is, not
repeated) root with magnitude equal to 1, so the method is zero stable.

(b) ρ(z) = z− 2 which has one zero, z = 2. This has magnitude 2 > 1 and therefore the method
is not zero stable.

(c) ρ(z) = z2 + 3z − 4 = (z − 1)(z + 4). One root is z = −4 which has magnitude greater than
1 and the method is therefore not zero stable.
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Solution (contd.)

(d) Here α2 = 1, α1 = −1 and α0 = 0, therefore

ρ(z) = z2 − z = z(z − 1)

which has two zeros, z = 0 and z = 1. These both have magnitude less than or equal to 1
and there is no repeated zero with magnitude equal to 1, so the method is zero stable.

(e) ρ(z) = z2 − 2z + 1 = (z − 1)2. Here z = 1 is not a simple root, it is repeated and, since it
has magnitude equal to 1, the method is not zero stable.

(f) ρ(z) = z2 +2z+5 and the roots of ρ(z) = 0 can be found from the quadratic formula. In this
case the roots are complex and are equal to Zero-stability requires that the absolute values
have magnitude less than or equal to 1. Consequently we conclude that the method is not
zero stable.

Task

Find the roots of the first characteristic polynomial for the linear multistep scheme

yn+2 − 2yn+1 + yn = h (fn+2 + 2fn+1 + fn)

and hence determine whether or not the scheme is zero stable.

Your solution

Answer
The first characteristic polynomial is

ρ(z) = α2z
2 + α1z + α0 = z2 − 2z + 1

and the roots of ρ(z) = 0 are both equal to 1. In the case of roots that are equal, zero-stability
requires that the absolute value has magnitude less than 1. Consequently we conclude that the
method is not zero stable.

At this stage, the notion of zero stability is rather abstract, so let us try using a zero unstable
method and see what happens. We consider the simple test problem
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dy

dt
= −y, y(0) = 1

which we know to have analytic solution y(t) = e−t, a quantity which decays with increasing t.
Implementing the zero unstable scheme

yn+1 − 2yn = hfn

on a spreadsheet package with h = 0.05 gives the following results

n t = nh yn ≈ y(nh)
0 0.00 1.00000
1 0.05 1.95000
2 0.10 3.80250
3 0.15 7.41488
4 0.20 14.45901
5 0.25 28.19506
6 0.30 54.98037
7 0.35 107.21172
8 0.40 209.06286
9 0.45 407.67258

10 0.50 794.96153
11 0.55 1550.17499
12 0.60 3022.84122
13 0.65 5894.54039
14 0.70 11494.35376
15 0.75 22413.98982

where 5 decimal places have been given for yn. The dramatic growth in the values of yn is due to
the zero instability of the method. (There are in fact other things than zero instability wrong with
the scheme yn+1 − 2yn = hfn, but it is the zero instability that is causing the large numbers.)

Consistency and order
A scheme that is zero stable will produce approximations that do not grow in size in a way that is
not present in the exact, analytic solution. Zero stability is a required property, but it is not enough
on its own. There remains the issue of whether the approximations are close to the exact values.

The truncation error of the general linear multistep method is a measure of how well the differential
equation and the numerical method agree with each other. It is defined by

τj =
1

β

(c0

h
y(jh) + c1y

′(jh) + c2hy′′(jh) + c3h
2y′′′(jh) + . . .

)
=

1

βh

∞∑
p=0

cph
py(p)(jh)

where β =
∑

βj is a normalising factor.

It is the first few terms in this expression that will matter most in what follows, and it helps us that
there are formulae for the coefficients which appear

c0 =
∑

αj, c1 =
∑

(jαj − βj), c2 =
∑ (

j2

2
αj − jβj

)
, c3 =

∑ (
j3

3!
αj −

j2

2
βj

)
and so on, the general formula for p ≥ 2 is cp =

∑ (
jp

(p)!
αj −

jp−1

(p− 1)!
βj

)
.
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Recall that the truncation error is intended to be a measure of how well the differential equation and
its approximation agree with each other. We say that the numerical method is consistent with the
differential equation if τj tends to zero as h → 0. The following Key Point says this in other words.

Key Point 11

The linear multistep scheme is said to be consistent if c0 = 0 and c1 = 0.

Example 8
Show that Euler’s method (yn+1 = yn + hfn) is consistent.

Solution

In this case α1 = 1, α0 = −1, β1 = 0 and β0 = 1. It follows that

c0 =
∑

αj = 1− 1 = 0 and c1 =
∑

jαj − βj = 1α1 − (β0 + β1) = 1− (1 + 0) = 0

and therefore Euler’s method is consistent.

Task

Show that the trapezium method (yn+1 = yn + h
2
(fn+1 + fn)) is consistent.

Your solution

Answer
In this case α1 = 1, α0 = −1, β1 = 1

2
and β0 = 1

2
. It follows that

c0 =
∑

αj = 1− 1 = 0 and c1 =
∑

jαj − βj = 1α1 − (β0 + β1) = 1− (1
2

+ 1
2
) = 0

and therefore the trapezium method is consistent.
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Task

Determine the consistency (or otherwise) of the following 2-step linear multistep
schemes

(a) yn+2 − 2yn+1 + yn = h(fn+2 − fn)

(b) yn+2 − yn+1 = h(fn+1 − 2fn)

(c) yn+2 − yn+1 = h(2fn+2 − fn+1)

Your solution

Answer

(a) c0 = α2 + α1 + α0 = 1 − 2 + 1 = 0, c1 = 2α2 + 1 × α1 + 0 × α0 − (β2 + β1 + β0) =
2(1) + 1(−2) + 0− (1− 1) = 0. Therefore the method is consistent.

(b) c0 = 1− 1 + 0 = 0, c1 = 2− 1− (1− 2) = 2 so the method is inconsistent.

(c) This method is consistent, because c0 = 1− 1 = 0 and c1 = 2− 1− (2− 1) = 0.

(Notice also that the first characteristic polynomial ρ(z), defined on page 6 of this Section, evaluated
at z = 1 is equal to α0 + α1 + · · ·+ αk = c0. It follows that a consistent scheme must always have
z = 1 as one of the roots of its ρ(z).)

Assuming that the method is consistent, the order of the scheme tells us how quickly the truncation
error tends to zero as h → 0. For example, if c0 = 0, c1 = 0, c2 = 0 and c3 6= 0 then the first non-
zero term in τj will be the one involving h2 and the linear multistep method is called second-order.
This means that if h is small then τj is dominated by the h2 term (because the h3 and subsequent
terms will be tiny in comparison) and halving h will cause τj to decrease by a factor of approximately
1
4
. The decrease is only approximately known because the h3 and other terms will have a small effect.

We summarise the general situation in the following Key Point.

Key Point 12

A linear multistep method is said to be of order p if

c0 = c1 = c2 = · · · = cp = 0 and cp+1 6= 0
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Combining the last two Key Points gives us another way of describing consistency: “A linear multistep
method is consistent if it is at least first order”.

Example 9
Find the order of

(a) Euler’s method

(b) The trapezium method.

Solution

(a) We have already found that c0 = c1 = 0 so the first quantity to calculate is

c2 =
∑ (

j2

2
αj − jβj

)
= 1

2
α1 − β1 = 1

2

which is not zero and therefore Euler’s method is of order 1. (Or, in other words, Euler’s
method is first order.)

(b) We have already found that c0 = c1 = 0 so the first quantity to calculate is

c2 =
∑ (

j2

2
αj − jβj

)
= 1

2
α1 − β1 = 1

2
− 1

2
= 0

this is equal to zero, so we must calculate the next coefficient

c3 =
∑ (

j3

3!
αj −

j2

2
βj

)
= 1

6
α1 − 1

2
β1 = 1

6
− 1

4
= − 1

12

which is not zero. Hence the trapezium method is of order 2 (that is, it is second order).

This finally explains some of the results we saw in the first Section of this Workbook. We saw that
the errors incurred by the Euler and trapezium methods, for a particular test problem, were roughly
proportional to h and h2 respectively. This behaviour is dictated by the first non-zero term in the
truncation error which is the one involving c2h for Euler and the one involving c3h

2 for trapezium.

We now apply the method to another linear multistep scheme.
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Example 10
Find the order of the 4-step, explicit linear multistep scheme

yn+4 − yn+3 =
h

24

(
55fn+3 − 59fn+2 + 37fn+1 − 9fn

)

Solution

In the established notation we have α4 = 1, α3 = −1, α2 = 0, α1 = 0 and α0 = 0. The β terms
similarly come from the coefficients on the right hand side (remembering the denominator of 24).
Now

c0 =
∑

αj = 0 and c1 =
∑

jαj − βj = 0

from which we conclude that the method is consistent.
We also find that

c2 =
∑

1
2
j2αj − jβj = 0, c3 =

∑
1
6
j3αj − 1

2
j2βj = 0,

c4 =
∑

1
24

j4αj − 1
6
j3βj = 0 c5 =

∑
1

120
j5αj − 1

24
j4βj = 0.348611 to 6 d.p.

(The exact value of c5 is 251
720

.)

Because c5 is the first non-zero coefficient we conclude that the method is of order 4.

So the scheme in Example 10 has the property that the truncation error will tend to zero proportional
to h4 (approximately) as h → 0. This is a good thing, as it says that the error will decay to zero
very quickly, when h is decreased.

Task

Find the order of the 2-step linear multistep scheme

yn+2 − yn+1 =
h

12

(
fn+2 + 8fn+1 − fn

)

Your solution
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Answer
In the established notation we have α2 = 1, α1 = −1 and α0 = 0. Also β2 = 5

12
, β1 = 2

3
and

β0 = − 1
12

. Now

c0 =
∑

αj = 1− 1 + 0 = 0 and c1 =
∑

jαj − βj = 2α2 + α1 − (β2 + β1 + β0) = 0

from which we conclude that the method is consistent.
We also find that

c2 =
∑

1
2
j2αj − jβj = 1

2
(4α2 + α1)− (2β2 + β1) = 0

c3 =
∑

1
6
j3αj − 1

2
j2βj = 1

6
(8α2 + α1)− 1

2
(4β2 + β1) = 0

c4 =
∑

1
24

j4αj − 1
6
j3βj = 1

24
(16α2 + α1)− 1

6
(8β2 + β1) = − 1

24

so that the method is of order 3.

Convergence
The key result concerning linear multistep methods is given in the following Key Point.

Key Point 13

The numerical approximation to the initial value problem converges to the actual solution as h → 0
if

1. the scheme is zero stable

2. the scheme is consistent

The proof of this result lies beyond the scope of this Workbook. It is worth pointing out that this
is not the whole story. The convergence result is useful, but only deals with h as it tends to zero.
In practice we use a finite, non-zero value of h and there are ways of determining how big an h it
is possible to “get away with” for a particular linear multistep scheme applied to a particular initial
value problem.

If, when implementing the methods described above, it is found that the numerical approximations
behave in an unexpected way (for example, if the numbers are very large when they should not be, or
if decreasing h does not seem to lead to results that converge) then one topic to look for in further
reading is that of “absolute stability”.
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2. An example of a Runge-Kutta method
A full discussion of the so-called Runge-Kutta methods is not required here, but we do need to touch
on them to resolve a remaining issue in the implementation of linear multistep schemes.

The problem with linear multistep methods is that a zero-stable, 1-step method can never be better
than second order (you need not worry about why this is true, it was proved in the latter half of the
last century by a man called Dahlquist). We have seen methods of higher order than 2, but they
were all at least 2-step methods. And the problem with 2-step methods is that we need 2 starting
values to implement them and we are only ever given 1 starting value: the initial condition y(0).

One way out of this “Catch 22” is to use a Runge-Kutta method to generate the extra starting
value(s) we need. Runge-Kutta methods are not linear multistep methods and do not suffer from
the problem mentioned above. There is no such thing as a free lunch, of course, and Runge-Kutta
methods are generally more expensive in effort to implement than linear multistep methods because
of the number of evaluations of f required at each time step.

The following Key Point gives a statement of what is, perhaps, the most popular Runge-Kutta
method (sometimes called “RK4”).

Key Point 14

Runge Kutta method (RK4)

Consider the usual initial value problem

dy

dt
= f(t, y), y(0) = y0.

Calculate K1 = f(nh, yn)

then K2 = f((n + 1
2
)h, yn + 1

2
hK1)

then K3 = f((n + 1
2
)h, yn + 1

2
hK2)

then K4 = f((n + 1)h, yn + hK3)

finally yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 + K4)

Notice that each calculation is explicit, all of the right-hand sides in the formulae in the Key Point
above involve known quantities.
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Example 11
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= cos(y) y(0) = 3

Carry out one time step of the Runge-Kutta method RK4 with a step size of
h = 0.1 so as to obtain an approximation to y(0.1).

Solution

The iteration must be carried out in four stages. We start by calculating

K1 = f(0, y0) = f(0, 3) = −0.989992

a value we now use in finding

K2 = f(1
2
h, y0 + 1

2
hK1) = f(0.05, 2.950500) = −0.981797

This value K2 is now used in our evaluation of

K3 = f(1
2
h, y0 + 1

2
hK2) = f(0.05, 2.950910) = −0.981875

which, in turn, is used in

K4 = f(h, y0 + hK3) = f(0.1, 2.901812) = −0.971390

All four of these values are then used to complete the iteration

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 + K4)

= 3 +
0.1

6
(−0.989992 + 2×−0.981797 + 2×−0.981875− 0.971390)

= 2.901855 to 6 decimal places.
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Task

Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= y(1− y) y(0) = 0.7

Carry out one time step of the Runge-Kutta method RK4 with a step size of
h = 0.1 so as to obtain an approximation to y(0.1).

Your solution

Answer
The time step must be carried out in four stages. We start by calculating

K1 = f(0, y0) = f(0, 0.7) = 0.210000

a value we now use in finding

K2 = f(1
2
h, y0 + 1

2
hK1) = f(0.05, 0.710500) = 0.205690

This value K2 is now used in our evaluation of

K3 = f(1
2
h, y0 + 1

2
hK2) = f(0.05, 0.710284) = 0.205780

which, in turn, is used in

K4 = f(h, y0 + hK3) = f(0.1, 0.720578) = 0.201345

All four of these values are then used to complete the time step

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 + K4)

= 0.7 +
0.1

6
(0.210000 + 2× 0.205690 + 2× 0.205780 + 0.201345)

= 0.720571 to 6 d.p.
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Exercises

1. Assuming the notation established earlier, write down the linear multistep scheme corresponding
to the choices k = 2, α0 = 0, α1 = −1, α2 = 1, β0 = −1

12
, β1 = 2

3
, β2 = 5

12
.

2. A numerical scheme has been used to approximate the solution of

dy

dt
= t2 − y2 y(0) = 2

and has given the following estimates, to 6 decimal places,

y(0.3) ≈ 1.471433, y(0.32) ≈ 1.447892

Now use the 2-step, explicit linear multistep scheme

yn+2 − 1.6yn+1 + 0.6yn = h (5fn+1 − 4.6fn)

to approximate y(0.34).

3. Find the roots of the first characteristic polynomial for the linear multistep scheme

5yn+2 + 3yn+1 − 2yn = h (fn+2 + 2fn+1 + fn)

and hence determine whether or not the scheme is zero stable.

4. Find the order of the 2-step linear multistep scheme

yn+2 + 2yn+1 − 3yn =
h

10

(
fn+2 + 16fn+1 + 17fn

)
(Would you recommend using this method?)

5. Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= 1/y2 y(0) = 2

Carry out one time step of the Runge-Kutta method RK4 with a step size of h = 0.4 so as to
obtain an approximation to y(0.4).
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Answers

1. yn+2 − yn+1 =
h

12

(
5fn+2 + 8fn+1 − fn

)
2. Evidently the value h = 0.02 will serve our purposes and we seek y17 ≈ y(0.34). The

values we will need to use in our implementation of the 2-step scheme are y16 = 1.447892,
y15 = 1.471433 and f16 = f(0.32, y16) = −1.993991 f15 = f(0.3, y15) = −2.075116
since f(t, y) = t2 − y2. It follows that

y17 = 1.6y16 − 0.6y15 + 0.02× (5f16 − 4.6f15) = 1.425279

And we conclude that y(0.34) ≈ 1.425279, to 6 decimal places.

3. The first characteristic polynomial is ρ(z) = α2z
2 +α1z +α0 = 5z2 +3z−2 and the roots of

ρ(z) = 0 can be found from the quadratic formula. In this case the roots are real and distinct
and are equal to 0.4 and − 1. In the case of roots that are distinct zero-stability requires
that the absolute values have magnitude less than or equal to 1 . Consequently we conclude
that the method is zero stable.

4. In the established notation we have α2 = 1, α1 = 2 and α0 = −3. The beta terms similarly
come from the coefficients on the right hand side (remembering the denominator of 10).

Now c0 =
∑

αj = 0 and c1 =
∑

jαj − βj = 0

from which we conclude that the method is consistent.

We also find that c2 =
∑

1
2
j2αj − jβj = 0 c3 =

∑
1
6
j3αj − 1

2
j2βj = −0.533333

so that the method is of order 2 . This method is not to be recommended however (check
the zero stability).

5. Each time step must be carried out in four stages. We start by calculating

K1 = f(0, y0) = f(0, 2) = 0.250000

a value we now use in finding K2 = f(1
2
h, y0 + 1

2
hK1) = f(0.2, 2.050000) = 0.237954

This value K2 is now used in our evaluation of

K3 = f(1
2
h, y0 + 1

2
hK2) = f(0.2, 2.047591) = 0.238514

which, in turn, is used in K4 = f(h, y0 + hK3) = f(0.4, 2.095406) = 0.227753

All four of these values are then used to complete the time step

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 + K4)

= 2 +
0.4

6
(0.250000 + 2× 0.237954 + 2× 0.238514 + 0.227753) = 2.095379
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