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Introduction
Second-order partial differential equations (PDEs) may be classified as parabolic, hyperbolic or elliptic.
Parabolic and hyperbolic PDEs often model time dependent processes involving initial data.

In this Section we consider numerical solutions of parabolic problems.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• review difference methods for first and second
derivatives ( 31.3)

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• implement simple methods to obtain
approximate solutions of the heat diffusion
equation
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1. Definitions
We begin by giving some definitions.
Suppose that u = u(x, t) satisfies the second order partial differential equation

Auxx + Buxt + Cutt + Dux + Eut + Fu = G

in which A, . . . , G are given functions. This equation is said to be

parabolic if B2 − 4AC = 0

hyperbolic if B2 − 4AC > 0

elliptic if B2 − 4AC < 0

These may look like rather abstract definitions at this stage, but we will see that equations of different
types give rise to mathematical models of different physical situations. In this Section we will consider
equations only of the parabolic type. The hyperbolic type is dealt with later in this Workbook and
the elliptic type is discussed in 33.

2. Motivation
Consider an example of the type seen in the earlier material concerning separable solutions of the
heat conduction equation. Suppose that u = u(x, t) is the temperature of a metal bar a distance x
from one end and at time t. For the sake of argument let us suppose that the metal bar has length
equal to ` and that the ends are held at constant temperatures uL at the left and uR at the right.

uL uR

x

0 �

Figure 2

We also suppose that the temperature distribution at the initial time is known to be f(x), with
f(0) = uL and f(`) = uR so that the initial and boundary conditions do not give rise to a conflict
at the ends of the bar at the initial time.

This physical situation may be modelled by

ut = αuxx (0 < x < `, t > 0)
u(0, t) = uL (t > 0)
u(`, t) = uR (t > 0)
u(x, 0) = f(x) (0 < x < `)


in which α > 0 is a constant called the thermal diffusivity or simply the diffusivity of the metal.
If the bar is made of aluminium then α = 0.86 cm2 s−1, and if made of copper then α = 1.14 cm2

s−1.

Using separation of variables and Fourier series (neither of which are required for the remainder of this
Section) it can be shown that the solution to the above problem (in the case where uL = uR = 0) is
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u(x, t) =
∞∑

m=1

Bme−m2απ2t/`2 sin(mπx/`), where Bm =
2

`

∫ `

0

f(s) sin(mπs/`) ds.

Now, let us be realistic. Any evaluation of u for particular choices of x and t must involve ap-
proximating the infinite series that defines u (that is, just taking the first few terms - and care is
required if we are to be sure that we have taken enough). Also, in each of the terms we retain in
the sum, we need to find Bm by integration. It is not surprising that computation of this procedure
is a common approach. So if we (eventually) resort to computation in order to find u, why not start
with a computational approach?

(This is not to say that there is no value in the analytic solution involving the Bm. The solution above
is of great value, but we simply observe here that there are times when a computational approach is
all we may end up needing.)

So, the aim of this Section is to derive methods for obtaining numerical solutions to parabolic
problems of the type above. In fact, it is sufficient for our present purposes to restrict attention to
that particular problem.

3. Approximating partial derivatives
Earlier, in 31.3, we saw methods for approximating first and second derivatives of a function
of one variable. We review some of that material here. If y = y(x) then the forward and central
difference approximations to the first derivative are:

dy

dx
≈ y(x + δx)− y(x)

δx
,

dy

dx
≈ y(x + δx)− y(x− δx)

2δx

and the central difference approximation to the second derivative is:

d2y

dx2
≈ y(x + δx)− 2y(x) + y(x− δx)

(δx)2

in which δx is a small x-increment. The quantity δx is what we previously referred to as h, but it is
now convenient to use a notation which is more closely related to the independent variable (in this
case x). (Examples implementing the difference approximations for derivatives can be found in
31.)
We now return to the subject of this Section, that of partial derivatives. The PDE ut = αuxx involves

the first derivative
∂u

∂t
and the second derivative

∂2u

∂x2
. We now adapt the ideas used for functions of

one variable to the present case involving u = u(x, t).

Let δt be a small increment of t, then the partial derivative
∂u

∂t
may be approximated by:

∂u

∂t
≈ u(x, t + δt)− u(x, t)

δt

Let δx be a small increment of x, then the partial derivative
∂2u

∂x2
may be approximated by:

∂2u

∂x
≈ u(x + δx, t)− 2u(x, t) + u(x− δx, t)

(δx)2

The two difference approximations above are the ones we will use later in this Section. Example 14
below refers to these and others.
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Example 14
Consider the function u defined by

u(x, t) = sin(x2 + 2t)

Using increments of δx = 0.004 and δt = 0.04, and working to 8 decimal places,
approximate

(a) ux(2, 3) with a one-sided forward difference

(b) uxx(2, 3) with a central difference

(c) ut(2, 3) with a one-sided forward difference

(d) ut(2, 3) with a central difference.

Enter your approximate derivatives to 3 decimal places.

Solution

The evaluations of u we will need are u(x, t) = −0.54402111, u(x + δx, t) = −0.55738933,
u(x− δx, t) = −0.53054047, u(x, t + δt) = −0.60933532, u(x, t− δt) = −0.47522703. It follows
that

(a) ux(2, 3) ≈ −0.55738933 + 0.54402111

0.004
= −3.342

(b) uxx(2, 3) ≈ −0.55738933 + 2× 0.54402111− 0.53054047

0.0042
= 7.026

(c) ut(2, 3) ≈ −0.60933532 + 0.54402111

0.04
= −1.633

(d) ut(2, 3) ≈ −0.60933532 + 0.47522703

2× 0.04
= −1.676

to 3 decimal places. (Workings shown to 8 decimal places.)

4. An explicit numerical method for the heat equation
The approximations used above for approximating partial derivatives can now be applied in order to
derive a numerical method for solving the heat conduction problem

ut = αuxx (0 < x < `, t > 0)
u(0, t) = 0 (t > 0)
u(`, t) = 0 (t > 0)
u(x, 0) = f(x) (0 < x < `).

In order to specify the numerical method we choose values for δt and δx and use these in approx-
imations of the two derivatives in the partial differential equation. It is convenient to divide the
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interval 0 < x < ` into equally spaced subintervals so, in effect, we choose a whole number J so

that δx =
`

J
.

Key Point 15

In order to specify the numerical procedure for solving the heat conduction equation

∂u

∂t
= α

∂2u

∂x2

we need to choose

δt − the time step

δx − the space step

δt

2δt

δx 2δx
δx

δt

n = 1

n = 2

n = 3

n = 4

j = 1 j = 2 j = 3 j = J−1 j = J

x = �

t

x

Figure 3

The diagram above shows the independent variables x and t at which we seek the function u. The
numerical solution we shall find is a sequence of numbers which approximate u at a sequence of (x, t)
points.
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Key Point 16

The numerical approximations to u(x, t) that we will find will be approximations to u at (x, t) values
where the horizontal and vertical lines cross in the above diagram (Figure 3).

The notation we use is that

un
j ≈ u(j δx , n δt)︸ ︷︷ ︸
↑ ↑

numerical exact (i.e., unknown) solution
approximation evaluated at x = j × δx, t = n× δt

The idea is that the subscript j counts how many “steps” to the right we have taken from the origin
and the superscript n counts how many time-steps (up, on the diagram) we have taken. To say this
another way

the superscript counts up the t values↙
un

j
↖

the subscript counts across the x values

For example, consider the point on Figure 3 which is highlighted with a small square. This point is
two steps to the right of the origin (so that j = 2) and five steps up (so that n = 5). The exact
solution evaluated at this point is u(2δx, 5δt) and our numerical approximation to that value is u5

2.
Combining this new notation with the familiar idea for approximating derivatives we obtain the
following approximation to the PDE

un+1
j − un

j

δt
= α

un
j−1 − 2un

j + un
j+1

(δx)2

Key Point 17

The exact solution u = u(x, t) satisfies the partial differential equation

ut = αuxx

The approximate (numerical) solution satisfies the difference equation

un+1
j − un

j

δt
= α

un
j−1 − 2un

j + un
j+1

(δx)2

The difference between the unknown exact solution and the numerical solution will be governed by
how well the one-sided and central differences approximate the partial derivatives in the PDE.
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To simplify (the appearance of) the numerical method we define a new quantity r =
αδt

(δx)2
so that

our numerical procedure can be written

un+1
j = un

j + r(un
j−1 − 2un

j + un
j+1) = run

j−1 + (1− 2r)un
j + run

j+1

This equation defines a numerical “stencil” which allows us to find one of the values at the n+1 time
level in terms of values at the previous level, n. In Figure 4 we envisage terms on the right-hand side
of the above equation leading towards a result equal to the left-hand side, and the arrows therefore
point towards the point at which un+1

j approximates u.

j − 1 j j + 1

n

n + 1

Figure 4

At the stage of the process depicted above, the solid circles represent points in the (x, t) plane where
we have already found our numerical approximation. The unfilled circle is the point for which the
new approximation un+1

j is being found.

Implementation
The initial condition gives u at t = 0, and this information can be used to find

u0
0, u0

1, u0
2, . . . , u0

J

that is, the numerical solution at all the selected x values and at t = 0. In general

u0
j = f(j × δx) = fj

where fj is a shorthand notation for f(j × δx).
Then we use the boundary conditions and numerical method

un+1
j = un

j + r(un
j−1 − 2un

j + un
j+1)

(with n = 0) to work out u1
j for j = 0, 1, 2, . . . , J . (This completes the first time-step.)

The time-stepping procedure is then used repeatedly to find un+1
j in terms of the un

j , which are
known either from the last time-step or (at the beginning) from the initial condition.

The time-stepping procedure is summarised in the following Key Point.
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Key Point 18

Here the step-by-step process used to implement the numerical procedure is presented.

1. The initial condition implies that

u0
j = fj (j = 0, 1, 2, . . . , J)

(the boundary conditions could be used to find u0
0 and u0

J , but our supposition is that this is
consistent with taking f0 and fJ).

2. The first time-step

Here we find u1
j for j = 0, 1, . . . , J .

(a) The boundary condition at x = 0 is u(0, t) = uL. It follows that u1
0 = uL.

(b) The boundary condition at x = ` is u(`, t) = uR. It follows that u1
J = uR.

(c) Now we work from left to right finding u1
j at the interior points. This is achieved by

repeatedly applying the general numerical scheme:

u1
1 = u0

1 + r(u0
0 − 2u0

1 + u0
2)

u1
2 = u0

2 + r(u0
1 − 2u0

2 + u0
3)

...

u1
J−1 = u0

J−1 + r(u0
J−2 − 2u0

J−1 + u0
J)

This completes the first time-step. We have taken the initial data and used our approx-
imation to the PDE to obtain an approximate solution at time t = δt.

3. The second time-step

Here we find u2
j for j = 0, 1, . . . , J .

(a) The boundary condition at x = 0 is u(0, t) = uL. It follows that u2
0 = uL.

(b) The boundary condition at x = ` is u(`, t) = uR. It follows that u2
J = uR.

(c) Now we work from left to right finding u2
j at the interior points. This is achieved by

repeatedly applying the general numerical scheme:

u2
1 = u1

1 + r(u1
0 − 2u1

1 + u1
2)

u2
2 = u1

2 + r(u1
1 − 2u1

2 + u1
3)

...

u2
J−1 = u1

J−1 + r(u1
J−2 − 2u1

J−1 + u1
J)

This completes the second time-step. We now have an approximation to u at time
t = 2δt.

4. And so on ....
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The following is a concrete example of the time-stepping procedure.

Example 15
The temperature u(x, t) of a metal bar of length ` = 2 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 4, that the two ends of the bar are
kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x(`− x)

Use the explicit difference scheme with δx = 0.5 and δt = 0.01 to approximate
u(x, t) at t = δt and t = 2δt.

Solution

In this case r = αδt/(δx)2 = 0.16 so that the numerical method can be written

un+1
j = un

j + 0.16(un
j−1 − 2un

j + un
j+1) = 0.68un

j + 0.16(un
j−1 + un

j+1)

We now find u0
j

u0
0 = 0 from the left-hand boundary condition

u0
1 = f(δx) = 0.75 from the initial condition

u0
2 = f(2δx) = 1 from the initial condition

u0
3 = f(3δx) = 0.75 from the initial condition

u0
4 = 0 from the boundary condition at the right hand end

The first time-step will find u1
j , but first we note that u1

0 = u1
4 = 0 from the two boundary conditions.

Now

u1
1 = 0.68u0

1 + 0.16(u0
0 + u0

2) = 0.68× 0.75 + 0.16(0 + 1) = 0.670
u1

2 = 0.68u0
2 + 0.16(u0

1 + u0
3) = 0.68× 1 + 0.16(0.75 + 0.75) = 0.920

u1
3 = 0.68u0

3 + 0.16(u0
2 + u0

4) = 0.68× 0.75 + 0.16(1 + 0) = 0.670

The second time-step will find u2
j , but first we note that u2

0 = u2
4 = 0 from the two boundary

conditions. Now

u2
1 = 0.68u1

1 + 0.16(u1
0 + u1

2) = 0.68× 0.67 + 0.16(0 + 0.92) = 0.603
u2

2 = 0.68u1
2 + 0.16(u1

1 + u1
3) = 0.68× 0.92 + 0.16(0.67 + 0.67) = 0.84

u2
3 = 0.68u1

3 + 0.16(u1
2 + u1

4) = 0.68× 0.67 + 0.16(0.92 + 0) = 0.603

(Quantities have been rounded to three decimal places here.)

Figure 5 plots the numerical solutions found in the example above. The initial condition is shown as
circles. Results of the first time-step appear as squares and the second time-step is shown as stars.
The line joining the values we found are not part of the numerical solution and are included only as
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an aid to clarity.

      

u0
j

u1
j

u2
j

0 0.5 1 1.5 2
x

u

0

0.2

0.4

0.6

0.8

1

Figure 5

Notice how the numerical results are behaving as they should. The temperature decreases slightly at
each time-step.

Task

The temperature u(x, t) of a metal bar of length ` = 2 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 2.25, that the two ends of the bar
are kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = sin(πx/`)

Use the explicit difference scheme with δx = 0.5 and δt = 0.05 to approximate
u(x, t) at t = δt and t = 2δt.

Your solution

Initial condition and first time-step:
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Answer
In this case r = αδt/(δx)2 = 0.45 so that the numerical scheme can be written

un+1
j = un

j + 0.45(un
j−1 − 2un

j + un
j+1) = 0.1un

j + 0.45(un
j−1 + un

j+1)

The first stage is to use the given data to find u0
j

u0
0 = 0 from the boundary condition

u0
1 = f(δx) = f(0.5) = 0.707 from the initial condition

u0
2 = f(2δx) = f(1) = 1 from the initial condition

u0
3 = f(3δx) = f(1.5) = 0.707 from the initial condition

u0
4 = 0 from the boundary condition

The first time-step will find u1
j . First we note that the boundary condition implies that u1

0 = u1
4 = 0.

u1
1 = 0.1u0

1 + 0.45(u0
0 + u0

2) = 0.1× 0.71 + 0.45(0 + 1) = 0.521
u1

2 = 0.1u0
2 + 0.45(u0

1 + u0
3) = 0.1× 1 + 0.45(0.71 + 0.71) = 0.736

u1
3 = 0.1u0

3 + 0.45(u0
2 + u0

4) = 0.1× 0.71 + 0.45(1 + 0) = 0.521

Your solution

Second time-step:

Answer
The second time-step will find u2

j . First we note that the boundary condition implies that u2
0 =

u2
4 = 0. Now

u2
1 = 0.1u1

1 + 0.45(u1
0 + u1

2) = 0.1× 0.52 + 0.45(0 + 0.74) = 0.383
u2

2 = 0.1u1
2 + 0.45(u1

1 + u1
3) = 0.1× 0.74 + 0.45(0.52 + 0.52) = 0.542

u2
3 = 0.1u1

3 + 0.45(u1
2 + u1

4) = 0.1× 0.52 + 0.45(0.74 + 0) = 0.383

5. Stability of the simple explicit scheme
The purpose of the time-stepping scheme is to approximate u(x, t) at later and later times t. It is
clear that the larger we take the time step δt, the fewer steps will be necessary to reach a particular
time t. One constraint on the size of δt is that we know from our earlier look at difference methods
that derivative approximations are most accurate when small increments are used. However, as we will
see in the next couple of pages, a far more telling constraint on the size of δt arises on consideration
of stability. We begin with an Example.
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Example 16

The temperature u(x, t) of a metal bar of length ` = 1 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 1, that the two ends of the bar are
kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x(`− x)

Use the explicit difference scheme with δx = 0.25 and δt = 0.075 to approximate
u(x, t) at t = δt and t = 2δt.

Solution

In this case r = αδt/(δx)2 = 1.2 so that the numerical scheme can be written

un+1
j = un

j + 1.2(un
j−1 − 2un

j + un
j+1) = −1.4un

j + 1.2(un
j−1 + un

j+1)

The first stage is to use the given data to find u0
j

u0
0 = 0 from the boundary condition

u0
1 = f(δx) = f(0.25) = 0.188 from the initial condition

u0
2 = f(2δx) = f(0.5) = 0.25 from the initial condition

u0
3 = f(3δx) = f(0.75) = 0.188 from the initial condition

u0
4 = 0 from the boundary condition

The first time-step will find u1
j . First we note that the boundary condition implies that u1

0 = u1
4 = 0.

u1
1 = −1.4u0

1 + 1.2(u0
0 + u0

2) = −1.4× 0.19 + 1.2(0 + 0.25) = 0.038
u1

2 = −1.4u0
2 + 1.2(u0

1 + u0
3) = −1.4× 0.25 + 1.2(0.188 + 0.188) = 0.1

u1
3 = −1.4u0

3 + 1.2(u0
2 + u0

4) = −1.4× 0.19 + 1.2(0.25 + 0) = 0.038

The second time-step will find u2
j . First we note that the boundary condition implies that u2

0 =
u2

4 = 0. Now

u2
1 = −1.4u1

1 + 1.2(u1
0 + u1

2) = −1.4× 0.04 + 1.2(0 + 0.1) = 0.067
u2

2 = −1.4u1
2 + 1.2(u1

1 + u1
3) = −1.4× 0.1 + 1.2(0.038 + 0.038) = −0.05

u2
3 = −1.4u1

3 + 1.2(u1
2 + u1

4) = −1.4× 0.04 + 1.2(0.1 + 0) = 0.067
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Figure 6 shows the results found in Example 16.

      

u0
j

u1
j

u2
j

x

u

0 0.25 0.5 0.75 1.0
−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 6

Something has gone wrong here. And it only gets worse in subsequent time-steps. After 9 time-steps
the numerical solution approximating u(x, t) at t = 9δt is

u(0.25, 9δt) ≈ u9
1 = −140.5531

u(0.50, 9δt) ≈ u9
2 = 198.7722

u(0.75, 9δt) ≈ u9
3 = −140.5531

(to 4 decimal places). This is an example of instability. A part of the numerical solution wants to
keep growing and growing in a way that is not a part of the engineering application being modelled.
There are many different definitions of (in)stability, and they often depend on the specific application
in mind. For the heat conduction problem under discussion here, the following definition is sufficient.

Key Point 19

The explicit difference scheme un+1
j = run

j−1 + (1− 2r)un
j + run

j+1

(
r =

αδt

(δx)2

)
un

0 = 0 (n > 0)

un
J = 0 (n > 0)

u0
j = f(j δx) (j = 1, 2, . . . , J − 1)

where Jδx = `, approximating the heat conduction problem

ut = αuxx (0 < x < `, t > 0)
u(0, t) = 0 (t > 0)
u(`, t) = 0 (t > 0)
u(x, 0) = f(x) (0 < x < `).


is said to be stable if the approximations un

j do not grow in magnitude with n.
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(Of course, there are applications where the principal quantity of interest does grow with time, and
in these cases other definitions of stability are appropriate.)

The main stability result for the explicit scheme is proved in many textbooks on the subject, but for
this Workbook it is sufficient to simply state it.

Key Point 20

The explicit scheme is stable if and only if

r ≤ 1
2

Writing this another way we see that the restriction on the time-step is that

δt ≤ δx2

2α

Why is the stability constraint a problem?
In the above account it has been stated that the stability constraint is a severe restriction on the
time-step δt. Here we discuss why this is the case.

For sake of argument let us take an example where α = 1 and choose δx =
1

10
. The stability

requirement insists that we must choose

δt ≤ 1

2
δx2 =

1

200
,

which is much smaller than δx. If we require an even smoother approximation in the x direction we

could halve δx taking it to be equal to
1

20
. It is now necessary that

δt ≤ 1

2
δx2 =

1

800
.

Decreasing δx by a factor of 2 causes δt to decrease by a factor of 4. The problem is that the upper
bound on δt involves the square of δx, which is likely to be very small.

The following method overcomes the requirement of tiny time-steps.
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6. The Crank-Nicolson method
In the notation established for the explicit method, the so-called Crank-Nicolson scheme can be
written

un+1
j = un

j + 1
2
r
(

un
j−1 − 2un

j + un
j+1︸ ︷︷ ︸

†

+ un+1
j−1 − 2un+1

j + un+1
j+1︸ ︷︷ ︸

‡

)
which might, at first glance, look off-puttingly complicated. To aid clarity, certain groups of terms
have been gathered together in the above:

† these are the terms that appeared on the right hand side of the explicit method and are involved
with approximating uxx at time t = n δt

‡ these are very similar to the † terms, but all the superscripts are n+ 1 instead of n, that is the
terms ‡ approximate uxx at time t = (n + 1) δt

(the factor of 1
2

outside the large bracket shows that we take the average of † and ‡)

Figure 7 shows another way of thinking of this numerical method. As in the earlier diagram of this
type, arrows point away from positions relating to terms on the right-hand side of the numerical
scheme.

j − 1 j j + 1

n

n + 1

Figure 7

The new terms in the Crank-Nicolson method, as compared with the explicit method, give rise to
two new unfilled circles on the diagram and the horizontal arrows.

The implementation of this method is similar to that used for the explicit method, but there is a key
difference. The Crank-Nicolson scheme is implicit, for consider its use in the first time-step when
finding u1

j ,

u1
j = u0

j︸︷︷︸
X

+ 1
2
r
(

u0
j−1︸︷︷︸
X

−2 u0
j︸︷︷︸

X

+ u0
j+1︸︷︷︸
X

+ u1
j−1 − 2u1

j + u1
j+1︸ ︷︷ ︸

?

)
The terms labelled X are known from the initial condition. But there are other unknown terms on
the right-hand side. We cannot simply “read off” the values at the new time-step as we did using the
explicit scheme. Instead we have to store all of the equations given by the stencil at a particular time-
step and then solve them as a system of simultaneous equations. The following Example illustrates
this point.
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Example 17

The temperature u(x, t) of a metal bar of length ` = 1.2 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0).

It is given that the metal has diffusivity α = 1, that the two ends of the bar are
kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x
√

(`− x)3

Use the Crank-Nicolson difference scheme with δx = 0.4 and δt = 0.1 to approx-
imate u(x, t) at t = δt and t = 2δt.

Solution

In this case r = αδt/(δx)2 = 0.62500 so that the numerical scheme can be written

un+1
j = un

j +
0.62500

2
(un

j−1 − 2un
j + un

j+1 + un+1
j−1 − 2un+1

j + un+1
j+1 )

Moving the unknowns to the left of the equation we obtain

−0.31250un+1
j−1 + 1.62500un+1

j − 0.31250un+1
j+1 = 0.37500un

j + 0.31250(un
j−1 + un

j+1)

The first stage is to use the given data to find u0
j

u0
0 = 0 from the boundary condition

u0
1 = f(δx) = f(0.4) = 0.28622 from the initial condition

u0
2 = f(2δx) = f(0.8) = 0.20239 from the initial condition

u0
3 = 0 from the boundary condition

The first time-step will find u1
j . First we note that the boundary condition implies that u1

0 = u1
3 = 0.

Two uses of the stencil give

−0.31250u1
0 + 1.62500u1

1 − 0.31250u1
2 = 0.37500u0

1 + 0.31250(u0
0 + u0

2) = 0.17058
−0.31250u1

1 + 1.62500u1
2 − 0.31250u1

3 = 0.37500u0
2 + 0.31250(u0

1 + u0
3) = 0.16534

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.62500 −0.31250
−0.31250 1.62500

) (
u1

1

u1
2

)
=

(
0.17058
0.16534

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u1

1 = 0.12932 and u1
2 = 0.12662.
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Solution (contd.)

The second time-step will find u2
j . First we note that the boundary condition implies that u2

0 =
u2

3 = 0. Two uses of the stencil give

−0.31250u2
0 + 1.62500u2

1 − 0.31250u2
2 = 0.37500u1

1 + 0.31250(u1
0 + u1

2) = 0.08806
−0.31250u2

1 + 1.62500u2
2 − 0.31250u2

3 = 0.37500u1
2 + 0.31250(u1

1 + u1
3) = 0.08789

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.62500 −0.31250
−0.31250 1.62500

) (
u2

1

u2
2

)
=

(
0.08806
0.08789

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u2

1 = 0.06707 and u2
2 = 0.06699.

Figure 8 depicts the numerical solutions found in Example 17 above. (Again, the dotted lines are
intended to aid clarity, they are not part of the numerical solution.)

      

u0
j

u1
j

u2
j

x

u

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.4 0.8 1.2

Figure 8
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Task

The temperature u(x, t) of a metal bar of length ` = 0.9 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0).

It is given that the metal has diffusivity α = 0.25, that the two ends of the bar
are kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = sin(πx/`)

Use the Crank-Nicolson difference scheme with δx = 0.3 and δt = 0.2 to approx-
imate u(x, t) at t = δt and t = 2δt.

Your solution

Initial condition and first time-step:
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Answer
In this case r = αδt/(δx)2 = 0.55556 so that the numerical scheme can be written

un+1
j = un

j +
0.55556

2
(un

j−1 − 2un
j + un

j+1 + un+1
j−1 − 2un+1

j + un+1
j+1 )

Moving the unknowns to the left of the equation we obtain

−0.27778un+1
j−1 + 1.55556un+1

j − 0.27778un+1
j+1 = 0.44444un

j + 0.27778(un
j−1 + un

j+1)

The first stage is to use the given data to find u0
j

u0
0 = 0 from the boundary condition

u0
1 = f(δx) = f(0.3) = 0.86603 from the initial condition

u0
2 = f(2δx) = f(0.6) = 0.86603 from the initial condition

u0
3 = 0 from the boundary condition

The first time-step will find u1
j . First we note that the boundary condition implies that u1

0 = u1
3 = 0.

Two uses of the stencil give

−0.27778u1
0 + 1.55556u1

1 − 0.27778u1
2 = 0.44444u0

1 + 0.27778(u0
0 + u0

2) = 0.62546
−0.27778u1

1 + 1.55556u1
2 − 0.27778u1

3 = 0.44444u0
2 + 0.27778(u0

1 + u0
3) = 0.62546

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.55556 −0.27778
−0.27778 1.55556

) (
u1

1

u1
2

)
=

(
0.62546
0.62546

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u1

1 = 0.48949 and u1
2 = 0.48949.

Your solution

Second time-step:
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The second time-step will find u2

j . First we note that the boundary condition implies that u2
0 =

u2
3 = 0. Two uses of the stencil give

−0.27778u2
0 + 1.55556u2

1 − 0.27778u2
2 = 0.44444u1

1 + 0.27778(u1
0 + u1

2) = 0.35352
−0.27778u2

1 + 1.55556u2
2 − 0.27778u2

3 = 0.44444u1
2 + 0.27778(u1

1 + u1
3) = 0.35352

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.55556 −0.27778
−0.27778 1.55556

) (
u2

1

u2
2

)
=

(
0.35352
0.35352

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u2

1 = 0.27667 and u2
2 = 0.27667.

In general
Having now seen some instances with a relatively large δx, we now look at the general case where
the space step may be much smaller. In this case there will be a larger system of equations to solve
at each time-step than was the case above.

In general, the procedure of moving the unknowns to the left hand side of the equation leads to

−r

2
un+1

j−1 + (1 + r)un+1
j − r

2
un+1

j+1 =
r

2
un

j−1 + (1− r)un
j +

r

2
un

j+1

which we apply all the way along the x-axis. That is, we put j = 1, 2, 3, . . . , J − 1 in the above
expression and hence derive a system of equations for all the u with superscript n + 1.

1 + r − r
2

0 . . . . . . 0

− r
2

1 + r − r
2

0 − r
2

1 + r − r
2

...
. . . . . . . . .

− r
2

0 . . . . . . 0 − r
2

1 + r





un+1
1

un+1
2

un+1
3

...

un+1
J−1



=



r
2
un

0 + (1− r)un
1 + r

2
un

2 + r
2
un+1

0

r
2
un

1 + (1− r)un
2 + r

2
un

3

r
2
un

2 + (1− r)un
3 + r

2
un

4

...

r
2
un

J−2 + (1− r)un
J−1 + r

2
un

J + r
2
un+1

J


The underlined terms on the right-hand side will be known from the boundary conditions. The doubly
underlined quantities are “new” at the current time-step and involve the only appearances of n + 1
on the right-hand side. All the other u approximations at time level n + 1 are unknown at this stage
and appear on the left.

The matrix on the left-hand side of the system has the following properties

• It is independent of nnn. In other words, the same matrix appears at each time-step. (We saw
this in the example and exercise above in which the same 2× 2 matrix appeared at each of the
two time-steps carried out).
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• It is tridiagonal. That is, the only non-zero entries are either on, or adjacent to, the diagonal.

Furthermore, there are only two different values (
r

2
and 1 + r) which appear. This is good

news as far as storage is concerned. Gaussian elimination (seen in 30, for example) works
extremely well on tridiagonal matrices.

It is also true that the matrix is strictly diagonally dominant. (That is, the diagonal element on
each row is greater in size than the sum of the absolute values of the off-diagonal elements on that
row.) This means that methods such as Jacobi and Gauss Seidel (see 30 for details) would
work very well.

Stability of the Crank-Nicolson scheme
This is the big pay-off when using the Crank-Nicolson method.

Key Point 21

The Crank-Nicolson method is stable for all values of r.

This is excellent news. It means that there is no hideously restrictive constraint on the size of δt.

7. Cost -v- benefit
At a first reading of this Section, it might be tempting to think that the extra effort involved in using
Crank-Nicolson (we have to store a set of simultaneous equations, we have to solve them and we
have to do this at every time-step) is enough to make the explicit method the winner in a cost-benefit
analysis. But this would be wrong.

In practical problems involving numerical approximations to parabolic problems the explicit method
is rarely good enough. The stability constraint (r ≤ 1

2
) imposes such tiny time-steps that it takes

a great deal of time for a computer to produce approximations corresponding to even fairly modest
values of t. If efficiency is what matters, then Crank-Nicolson beats the explicit approach, and it is
worth the extra initial effort formulating a solver (such as those we saw in 30) for the system
of equations.
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Exercises

1. Consider the function u defined by

u(x, t) = x3 cos(xt)

Using increments of δx = 0.005 and δt = 0.01, and working to 8 decimal places, approximate

(a) ux(2, 3) with a one-sided forward difference

(b) uxx(2, 3) with a central difference

(c) ut(2, 3) with a one-sided forward difference

(d) ut(2, 3) with a central difference.

State the approximate derivatives to 3 decimal places.

2. The temperature u(x, t) of a metal bar of length ` = 3 at a distance x from one end and at
time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 1.6, that the two ends of the bar are kept at
temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x(`− x)

Use the explicit difference scheme with δx = 0.75 and δt = 0.08 to approximate u(x, t) at
t = δt and t = 2δt.

3. The temperature u(x, t) of a metal bar of length ` = 1.2 at a distance x from one end and at
time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0).

It is given that the metal has diffusivity α = 2.25, that the two ends of the bar are kept at
temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = sin(πx/`)

Use the Crank-Nicolson difference scheme with δx = 0.4 and δt = 0.06 to approximate u(x, t)
at t = δt and at t = 2δt.
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Answers

1. The evaluations of u we will need are u(x, t) = −0.41614684, u(x + δx, t) = −0.43162908,
u(x − δx, t) = −0.40095819, u(x, t + δt) = −0.42521885, u(x, t − δt) = −0.40703321. It
follows that

(a) ux(1, 2) ≈ −0.43162908 + 0.41614684

0.005
= −3.096

(b) uxx(1, 2) ≈ −0.43162908 + 2× 0.41614684− 0.40095819

0.0052
= −11.744

(c) ut(1, 2) ≈ −0.42521885 + 0.41614684

0.01
= −0.907

(d) ut(1, 2) ≈ −0.42521885 + 0.40703321

2× 0.01
= −0.909

to 3 decimal places. (Workings shown to 8 decimal places.)

2. In this case r = α2δt/(δx)2 = 0.227556 so that the numerical scheme can be written

un+1
j = un

j + 0.227556(u2
j−1 − 2un

j + un
j+1) = 0.544889un

j + 0.227556(u2
j−1 + un

j+1)

The first stage is to use the given data to find u0
j

u0
0 = 0 from the boundary condition

u0
1 = f(δx) = f(0.75) = 1.6875 from the initial condition

u0
2 = f(2δx) = f(1.5) = 2.25 from the initial condition

u0
3 = f(3δx) = f(2.25) = 1.6875 from the initial condition

u0
4 = 0 from the boundary condition

The first timestep will find u1
j . We note that the boundary condition implies that u1

0 = u1
4 = 0.

u1
1 = 0.544889u0

1 + 0.227556(u0
0 + u0

2)=0.544889×1.6875 + 0.227556(0 + 2.25) = 1.4315
u1

2 = 0.544889u0
2 + 0.227556(u0

1 + u0
3)=0.544889×2.25 + 0.227556(1.688 + 1.688) = 1.994

u1
3 = 0.544889u0

3 + 0.227556(u0
2 + u0

4)=0.544889×1.6875 + 0.227556(2.25 + 0) = 1.4315

The second timestep will find u2
j . First we note that the boundary condition implies that

u2
0 = u2

4 = 0.

u2
1 = 0.544889u1

1 + 0.227556(u1
0 + u1

2)=0.544889×1.4315 + 0.227556(0 + 1.994) = 1.233754
u2

2 = 0.544889u1
2 + 0.227556(u1

1 + u1
3)=0.544889×1.994 + 0.227556(1.432 + 1.432) = 1.738

u2
3 = 0.544889u1

3 + 0.227556(u1
2 + u1

4)=0.544889×1.4315 + 0.227556(1.994 + 0) = 1.233754

where some quantities have been rounded to 6 decimal places.
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Answers

3. In this case r = αδt/(δx)2 = 0.84375 so that the numerical scheme can be written

un+1
j = un

j +
0.84375

2
(un

j−1 − 2un
j + un

j+1 + un+1
j−1 − 2un+1

j + un+1
j+1 )

Moving the unknowns to the left of the equation we obtain

−0.42188un+1
j−1 + 1.84375un+1

j − 0.42188un+1
j+1 = 0.15625un

j + 0.42188(un
j−1 + un

j+1)

The first stage is to use the given data to find u0
j

u0
0 = 0 from the boundary condition

u0
1 = f(δx) = f(0.4) = 0.86603 from the initial condition

u0
2 = f(2δx) = f(0.8) = 0.86603 from the initial condition

u0
3 = 0 from the boundary condition

The first time-step will find u1
j . First we note that the boundary condition implies that

u1
0 = u1

3 = 0. Two uses of the stencil give

−0.42188u1
0 + 1.84375u1

1 − 0.42188u1
2 = 0.15625u0

1 + 0.42188(u0
0 + u0

2) = 0.50067
−0.42188u1

1 + 1.84375u1
2 − 0.42188u1

3 = 0.15625u0
2 + 0.42188(u0

1 + u0
3) = 0.50067

The implicit nature of this method means that we have to do some extra work to complete
the time-step. We must now solve the simultaneous equations(

1.84375 −0.42188
−0.42188 1.84375

) (
u1

1

u1
2

)
=

(
0.50067
0.50067

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations
to give u1

1 = 0.35212 and u1
2 = 0.35212.

The second time-step will find u2
j . First we note that the boundary condition implies that

u2
0 = u2

3 = 0. Two uses of the stencil give

−0.42188u2
0 + 1.84375u2

1 − 0.42188u2
2 = 0.15625u1

1 + 0.42188(u1
0 + u1

2) = 0.20357
−0.42188u2

1 + 1.84375u2
2 − 0.42188u2

3 = 0.15625u1
2 + 0.42188(u1

1 + u1
3) = 0.20357

The implicit nature of this method means that we have to do some extra work to complete
the time-step. We must now solve the simultaneous equations(

1.84375 −0.42188
−0.42188 1.84375

) (
u2

1

u2
2

)
=

(
0.20357
0.20357

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations
to give u2

1 = 0.14317 and u2
2 = 0.14317.

68 HELM (2008):
Workbook 32: Numerical Initial Value Problems


