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Introduction
In the preceding Section we looked at parabolic partial differential equations. Another class of PDE
modelling initial value problems are of the hyperbolic type.

In this Section we will concentrate on the wave equation, which was introduced in 25.
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Prerequisites
Before starting this Section you should . . .

• revise those aspects of 25 which deal
with the wave equation

• familiarise yourself with difference methods
for approximating first and second derivatives

• be familiar with the numerical methods used
for parabolic equations�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• obtain simple numerical solutions of the wave
equation
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1. The (one-dimensional) wave equation
The wave equation is a PDE which (as its name suggests) models wave-like phenomena. It is a model
of waves on water, of sound waves, of waves of reactant in chemical reactions and so on. For the
purposes of most of the following examples we may think of the application in hand as that of being
a length of string tightly stretched between two points. Let u = u(x, t) be the displacement from
rest of the string at time t and distance x from one end. Oscillations in the string may be modelled
by the wave equation

utt = c2uxx (0 < x < `, t > 0)

where ` is the length of the string, t = 0 is some initial time and c > 0 is a constant (the wave
speed) dependent on the material properties of the string. (Further discussion of the constant c is
given in 25.2.)

The wave equation is hyperbolic, as we can readily verify on recalling the definitions at the beginning
of Section 32.4. Extra information is needed to specify the initial value problem. The initial position
and initial velocity are given as

u(x, 0) = f(x)
ut(x, 0) = g(x)

}
0 ≤ x ≤ `

Finally, we need boundary conditions specifying how the ends of the string are held. For example

u(0, t) = u(`, t) = 0 (t > 0)

models the situation where the string is fixed at each end.
(We will suppose that f(0) = f(`) = 0 so that there is no apparent conflict at the ends of the string
at the initial time.)

2. Numerical solutions
The approach we will adopt is similar to that seen in Section 32.4 where we looked at parabolic
equations. We use the notation

un
j

to denote an approximation to u evaluated at x = j× δx, t = n× δt. Approximating the derivatives
in the PDE

utt = c2ux

by central differences we obtain the numerical difference equation

un+1
j − 2un

j + un−1
j

(δt)2
= c2

un
j+1 − 2un

j + un
j−1

(δx)2
.

Multiplying through by (δt)2 this can be rearranged to give

un+1
j = 2un

j − un−1
j + µ2(un

j+1 − 2un
j + un

j−1)

in which µ =
cδt

δx
is called the Courant number.

The equation above gives un+1
j in terms of u-approximations at earlier time-steps (that is, all the

appearances of u on the right-hand side have a superscript smaller than n + 1).
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Thinking of the numerical stencil graphically we have the situation shown above. We may think of
the values on the right-hand side of the equation “pointing to” a new value on the left-hand side.

Key Point 22

Timesteps (other than the first one) are carried out by using the numerical stencil

un+1
j = 2un

j − un−1
j + µ2(un

j+1 − 2un
j + un

j−1)︸ ︷︷ ︸
↑ ↑

“new” approximation “old” approximations at
at (n + 1)th time-step earlier time-steps

(We will deal with how to carry out the first time-step shortly.)

The time-stepping process has much in common with the corresponding procedure for parabolic
problems. The following Example will help establish the general idea.
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Example 18

Given that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and 0 < x < 1 with boundary
conditions u(0, t) = u(1, t) = 0 (t > 0) with wave speed c = 1.2.
The numerical method un+1

j = 2un
j − un−1

j + µ2(un
j+1 − 2un

j + un
j−1) where µ = c δt/δx, is

implemented using δx = 0.25 and δt = 0.1.
Suppose that, after 5 time-steps, the following data forms part of the numerical solution:

u4
0 = 0.0000 u5

0 = 0.0000
u4

1 = 0.9242 u5
1 = 0.7110

u4
2 = −0.0020 u5

2 = −0.0059
u4

3 = −0.9624 u5
3 = −0.7409

u4
4 = 0.0000 u5

4 = 0.0000

Carry out the next time-step so as to find an approximation to u at t = 6δt.

Solution

In this case µ = 1.2× 0.1/0.25 = 0.48 and the required time-step is carried out as follows:

u6
0 = 0 from the boundary condition

u6
1 = 2u5

1 − u4
1 + µ2(u5

2 − 2u5
1 + u5

0) = −0.1689

u6
2 = 2u5

2 − u4
2 + µ2(u5

3 − 2u5
2 + u5

1) = −0.0140

u6
3 = 2u5

3 − u4
3 + µ2(u5

4 − 2u5
3 + u5

2) = −0.1794

u6
4 = 0 from the boundary condition

to 4 decimal places and these are the approximations to u(0, 6δt), u(0.25, 6δt), u(0.5, 6δt),
u(0.75, 6δt) and u(1, 6δt), respectively.

The diagram below shows the numerical results that appeared in the example above. It can be seen
that the example was a (rather coarse) model of a standing wave with two antinodes.
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Figure 10
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Task

Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and
0 < x < 1. It is given that u satisfies boundary conditions u(0, t) = u(1, t) = 0
(t > 0) and initial conditions that need not be stated for the purposes of this
question. The application is such that the wave speed c = 1.2.
The numerical method un+1

j = 2un
j − un−1

j + µ2(un
j+1 − 2un

j + un
j−1) where

µ = c δt/δx, is implemented using δx = 0.25 and δt = 0.2.
Suppose that, after 8 time-steps, the following data forms part of the numerical
solution:

u7
0 = 0.0000 u8

0 = 0.0000
u7

1 = 0.6423 u8
1 = 0.4640

u7
2 = 0.8976 u8

2 = 0.6792
u7

3 = 0.6789 u8
3 = 0.4668

u7
4 = 0.0000 u8

4 = 0.0000

Carry out the next time-step so as to find an approximation to u at t = 9δt.

Your solution

Answer
In this case µ = 1.2× 0.2/0.25 = 0.96 and the required time-step is carried out as follows:

u9
0 = 0 from the boundary condition

u9
1 = 2u8

1 − u7
1 + µ2(u8

2 − 2u8
1 + u8

0) = 0.0564

u9
2 = 2u8

2 − u7
2 + µ2(u8

3 − 2u8
2 + u8

1) = 0.0667

u9
3 = 2u8

3 − u7
3 + µ2(u8

4 − 2u8
3 + u8

2) = 0.0202

u9
4 = 0 from the boundary condition

to 4 decimal places and these are the approximations to u(0, 9δt), u(0.25, 9δt), u(0.5, 9δt),
u(0.75, 9δt) and u(1, 9δt), respectively.

The above Task concerns a stretched string oscillating in such a way that at the 9th time-step the
string is approximately flat. The motion continues with u taking negative values. Figure 11 below
uses data calculated above, and also data for the next two time-steps so as to show subsequent
progress of the solution.

HELM (2008):
Section 32.5: Hyperbolic PDEs

73



0

0.5

1

x

u

0 0.25 0.5 0.75 1.0

−

0.5

n = 7
n = 8
n = 9
n = 10
n = 11

Figure 11

3. The first time-step
In the Example and Task above we have seen how time-steps can be carried out using the numerical
stencil

un+1
j = 2un

j − un−1
j + µ2(un

j+1 − 2un
j + un

j−1),

but there remains one issue which, so far, we have neglected. How do we carry out the first time-step?

Initial conditions
The initial time-step must use information from the two initial conditions

u(x, 0) = f(x)
ut(x, 0) = g(x)

}
0 ≤ x ≤ `

The first initial condition is easy enough to interpret. It gives un
j in the case where n = 0. In fact

u0
j = fj

where fj is simply shorthand for f(j × δx).

The second initial condition, the one involving g, gives information about ut =
∂u

∂t
at t = 0. We can

approximate the t-derivative of u at t = 0 and x = j × δx by a central difference to write

u1
j − u−1

j

2δt
= gj

in which gj is shorthand for g(j × δx).

This last expression involves u−1
j which, if it has a meaning at all, refers to u at time t = −δt, that

is, before the initial time t = 0. One way to think of u−1
j is simply as an artificial quantity which

proves useful later on. The equation above, rearranged for u−1
j is

u−1
j = u1

j − 2δt× gj
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Key Point 23

A central difference used to approximate the first derivative in the condition defining initial speed
gives rise to the following useful equation

u−1
j = u1

j − 2δt× gj

The first time-step
To carry out the first time-step we put n = 0 in the numerical stencil

un+1
j = 2un

j − un−1
j + µ2

(
un

j+1 − 2un
j + un

j−1

)
,

to give

u1
j = 2u0

j − u−1
j + µ2

(
u0

j+1 − 2u0
j + u0

j−1

)
.

Those terms on the right-hand side with a 0 superscript are known via the function f since we know
that u0

j = fj. Hence

u1
j = 2fj − u−1

j + µ2
(
fj+1 − 2fj + fj−1

)
.

And the u−1
j term is dealt with using the Key Point above to give

u1
j = 2fj − u1

j + 2δt× gj + µ2
(
fj+1 − 2fj + fj−1

)
.

and therefore, moving the latest appearance of u1
j over to the left-hand side and dividing by 2,

u1
j = fj + δt× gj + 1

2
µ2

(
fj+1 − 2fj + fj−1

)
= 1

2
µ2

(
fj−1 + fj+1

)
+ (1− µ2)fj + δt× gj

Key Point 24

The first time-step is carried out by using the initial data and can be summarised as

u1
j = 1

2
µ2

(
fj−1 + fj+1

)
+ (1− µ2)fj + δt× gj
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Example 19

Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and
0 < x < 1. It is given that u satisfies boundary conditions u(0, t) = u(1, t) = 0
(t > 0) and initial conditions that may be summarised as

f0 = 0.0000 g0 = 0.0000
f1 = 0.6000 g1 = 0.1000
f2 = 0.0000 g2 = 0.2000
f3 = −0.5000 g3 = 0.1000
f4 = 0.0000 g4 = 0.0000

The application is such that the wave speed c = 1.
Carry out the first two time-steps of the numerical method

un+1
j = 2un

j − un−1
j + µ2(un

j+1 − 2un
j + un

j−1)

where µ = c δt/δx in which δx = 0.25 and δt = 0.2.

Solution

In this case µ = 1× 0.2/0.25 = 0.8 and the first time-step is carried out as follows (to 4 d.p.):

u1
0 = 0 from the boundary condition

u1
1 = 1

2
µ2(f0 + f2) + (1− µ2)f1 + δtg1 = 0.2360

u1
2 = 1

2
µ2(f1 + f3) + (1− µ2)f2 + δtg2 = 0.0720

u1
3 = 1

2
µ2(f2 + f4) + (1− µ2)f3 + δtg3 = −0.0160

u1
4 = 0 from the boundary condition

The second time-step is as follows (to 4 d.p.):

u2
0 = 0 from the boundary condition

u2
1 = 2u1

1 − u0
1 + µ2(u1

2 − 2u1
1 + u1

0) = −0.3840

u2
2 = 2u1

2 − u0
2 + µ2(u1

3 − 2u1
2 + u1

1) = 0.1005

u2
3 = 2u1

3 − u0
3 + µ2(u1

4 − 2u1
3 + u1

2) = 0.4309

u2
4 = 0 from the boundary condition
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Task

Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and
0 < x < 0.8. It is given that u satisfies boundary conditions u(0, t) = u(0.8, t) = 0
(t > 0) and initial conditions that may be summarised as

f0 = 0.0000 g0 = 0.0000
f1 = 0.1703 g1 = 0.4227
f2 = 0.2364 g2 = 0.5417
f3 = 0.1703 g3 = 0.4227
f4 = 0.0000 g4 = 0.0000

The application is such that the wave speed c = 1.
Carry out the first two time-steps of the numerical method

un+1
j = 2un

j − un−1
j + µ2(un

j+1 − 2un
j + un

j−1)

where µ = c δt/δx in which δx = 0.2 and δt = 0.11.

Your solution
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Answer
In this case µ = 1× 0.11/0.2 = 0.55 and the first time-step is carried out as follows:

u1
0 = 0 from the boundary condition

u1
1 = 1

2
µ2(f0 + f2) + (1− µ2)f1 + δtg1 = 0.2010

u1
2 = 1

2
µ2(f1 + f3) + (1− µ2)f2 + δtg2 = 0.2760

u1
3 = 1

2
µ2(f2 + f4) + (1− µ2)f3 + δtg3 = 0.2010

u1
4 = 0 from the boundary condition

The second time-step is as follows:

u2
0 = 0 from the boundary condition

u2
1 = 2u1

1 − u0
1 + µ2(u1

2 − 2u1
1 + u1

0) = 0.1936

u2
2 = 2u1

2 − u0
2 + µ2(u1

3 − 2u1
2 + u1

1) = 0.2702

u2
3 = 2u1

3 − u0
3 + µ2(u1

4 − 2u1
3 + u1

2) = 0.1936

u2
4 = 0 from the boundary condition

4. Stability
There is a stability constraint that is common to many methods for obtaining numerical solutions of
the wave equation. Issues relating to stability of numerical methods can be extremely complicated,
but the following Key Point is enough for our purposes.

Key Point 25

The numerical method seen in this Section requires that

µ ≤ 1 that is,
cδt

δx
≤ 1

for solutions not to grow unrealistically with n.

This is called the CFL condition (named after an acronym of three mathematicians Courant, Friedrichs
and Lewy).
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Exercises

1. Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and 0 < x < 0.6.
It is given that u satisfies boundary conditions u(0, t) = u(0.6, t) = 0 (t > 0) and initial
conditions that need not be stated for the purposes of this question. The application is such
that the wave speed c = 1.4.
The numerical method

un+1
j = 2un

j − un+1
j + µ2(un

j+1 − 2un
j + un

j−1)

where µ = c δt/δx, is implemented using δx = 0.15 and δt = 0.1.
Suppose that, after 7 time-steps, the following data forms part of the numerical solution:

u6
0 = 0.0000 u7

0 = 0.0000
u6

1 = 0.1024 u7
1 = 0.0997

u6
2 = 0.1986 u7

2 = 0.1730
u6

3 = 0.2361 u7
3 = 0.1169

u6
4 = 0.0000 u7

4 = 0.0000

Carry out the next time-step so as to find an approximation to u at t = 8δt.

2. Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and 0 < x < 1. It is
given that u satisfies boundary conditions u(0, t) = u(1, t) = 0 (t > 0). The initial elevation
may be summarised as

f0 = 0.0000 f1 = 0.7812 f2 = 0.2465
f3 = −0.1209 f4 = 0.0000

and the string is initially at rest (that is, g(x) = 0). The application is such that the wave
speed c = 1.
Carry out the first two time-steps of the numerical method

un+1
j = 2un

j − un−1
j + µ2(un

j+1 − 2un
j + un

j−1)

where µ = c δt/δx in which δx = 0.25 and δt = 0.2.
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Answers

1. In this case µ = 1.4×0.1/0.15 = 0.93333 and the required time-step is carried out as follows:

u8
0 = 0 from the boundary condition

u8
1 = 2u7

1 − u6
1 + µ2(u7

2 − 2u7
1 + u7

0) = 0.0740

u8
2 = 2u7

2 − u6
2 + µ2(u7

3 − 2u7
2 + u7

1) = 0.0347

u8
3 = 2u7

3 − u6
3 + µ2(u7

4 − 2u7
3 + u7

2) = −0.0552

u8
4 = 0 from the boundary condition

to 4 decimal places and these are the approximations to u(0, 8δt), u(0.15, 8δt), u(0.3, 8δt),
u(0.45, 8δt) and u(0.6, 8δt), respectively.

2. In this case µ = 1× 0.2/0.25 = 0.8 and the first time-step is carried out as follows:

u1
0 = 0 from the boundary condition

u1
1 = 1

2
µ2(f0 + f2) + (1− µ2)f1 + δtg1 = 0.3601

u1
2 = 1

2
µ2(f1 + f3) + (1− µ2)f2 + δtg2 = 0.3000

u1
3 = 1

2
µ2(f2 + f4) + (1− µ2)f3 + δtg3 = 0.0354

u1
4 = 0 from the boundary condition

to 4 decimal places.

The second time-step is as follows:

u2
0 = 0 from the boundary condition

u2
1 = 2u1

1 − u0
1 + µ2(u1

2 − 2u1
1 + u1

0) = −0.3299

u2
2 = 2u1

2 − u0
2 + µ2(u1

3 − 2u1
2 + u1

1) = 0.2226

u2
3 = 2u1

3 − u0
3 + µ2(u1

4 − 2u1
3 + u1

2) = 0.3384

u2
4 = 0 from the boundary condition

to 4 decimal places.
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