
Forces in More
than One Dimension
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Introduction
This Section looks at forces on objects resting or moving on inclined planes and forces on objects
moving along curved paths. The previous ideas are exploited in example calculations related to
passenger sensations of forces on amusement rides.
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Prerequisites
Before starting this Section you should . . .

• be able to use vectors and to carry out scalar
and vector products

• be able to use Newton’s laws to describe and
model the motion of particles

• be able to use coordinate geometry to study
circles and parabolas

• be able to use calculus to differentiate and
integrate polynomials
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Learning Outcomes
On completion you should be able to . . .

• compute frictional forces on static and
moving objects on inclined planes and on
objects moving at constant speed around
bends

• calculate the forces experienced by
passengers in vehicles moving along straight,
curved and inclined tracks
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1. Forces in two or three dimensions

Forces during circular motion
Consider a particle moving in a horizontal plane so that its position at any time t is given by

r = r cos θi + r sin θj

where r is a constant and i and j are unit vectors at right-angles. The angle, θ, made by r with the
horizontal is a function of time. We can consider four special values of θ and the associated values
of r. These are shown in the following table and in Figure 17.

x

y

i

j

θ
sin θ

cos θ

r

r

r(θ=0)

r(θ=π/2)

r(θ=π)

r(θ=3π/2)

θ r
0 ri

π/2 rj

π −ri
3π/2 −rj

Figure 17

Note that |r| = r is a constant for all values of θ, so we must have motion in a circle of radius r. If
we assume a constant angular velocity ω rad s−1 so that θ = ωt, then the velocity is

dr

dt
= ωr(− sin ωti + cos ωtj). (2.1)

Hence, taking the dot product,

r.
dr

dt
= ωr2(− cos ωt sin ωt + sin ωt cos ωt) = 0

which implies that
dr

dt
is always perpendicular to r. Since

dr

dt
is the velocity vector v, this means that

the velocity vector is always tangential to the circle (see Figure 18). Note also that |v| = v = ωr,

so ω =
v

r
. Differentiating (2.1) again,

d2r

dt2
= ω2r(− cos ωti− sin ωtj) = −ω2r. (2.2)

r̈

r

dr

dt

Figure 18: The velocity vector is tangential to motion in a circle
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Equation (2.2) means that the second derivative,
d2r

dt2
, which represents the acceleration a, acts along

the radius towards the centre of the circle and is perpendicular to
dr

dt
.

The magnitude of the velocity (the speed) is constant and the acceleration, a, is associated with
the changing direction of the velocity. The force must act towards the centre of the circle to achieve

this change in direction around the circle. Since a(t) = −ω2r(t) , where ω =
v

r
, we see that the

acceleration acts towards the centre of the circle and has a magnitude given by a =
v2

r
. This is a

special example of the fact that forces in the direction of motion cause changes in speed, while forces
at right-angles to the direction of motion cause changes in direction.

When a particle is moving at constant speed around a circle on the end of a rope, then the force
directed towards the centre is supplied by the tension in the rope. When a vehicle moves at constant
speed around a circular bend in a road, then the force directed towards the centre of the bend is
supplied by sideways friction of the tyres with the road. If the vehicle of mass m were to be pushed or
dragged sideways by a steady force then it would be necessary to overcome the frictional force. This
force depends on the normal reaction R, which is equal and opposite to the weight of the vehicle
(mg). The friction force is given by µmg where µ is the coefficient of friction and it must at least
equal the required force towards the centre of the bend to avoid skidding. So, we must have

µmg ≥ mv2

r
. (2.3)

Example 9
A car of mass 900 kg drives around a roundabout of radius 15 m at a constant
speed of 10 m s−1.

(a) Draw a vector diagram showing the forces on the car in the vertical
and sideways directions.

(b) What is the magnitude of the force directed towards the centre of the
bend?

(c) What is the friction force between the car and the road?

(d) What does this imply about the minimum value of the coefficient of
friction?

mv2

r

R

W

F

mg

Figure 19: Forces on a vehicle negotiating a circular bend at constant speed
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Solution

(a) See Figure 19. (In addition to the sideways friction involved in cornering, there will be a net
force causing forward motion which is generated by the vehicle engine and exerted through friction
between the tyres and the road.) The forces are shown as if they act at the centre of the vehicle,
since the vehicle is being treated as a particle. Strictly speaking, the frictional forces on a road
vehicle should be considered to act at the tyre/road contact and there will be differences between
the forces at each wheel.

(b) The magnitude of the force is obtained by using

mv2

r
=

900× 100

15
= 6000.

So the magnitude of the force acting towards the centre of the roundabout is 6000 N.

(c) The sideways force provided by friction is |F | = µ|R|. In this case |R| = mg.

(d) Consequently we must have µmg ≥ 6000, that is

µ ≥ 6000

900× 9.81
= 0.68.

Task

Suppose that the coefficient of friction between the car and the ground in dry
conditions is 0.96.

(a) At what speed could the car drive around the roundabout without skidding?

Your solution

Answer
Equation (2.3) on page 36 states that for the vehicle to go round the bend just without skidding

mv2

r
= µmg, or

v2

r
= µg.

In this case, the maximum speed is required, so the relationship is best rearranged into the form
v =

√
µgr. The values to be substituted are µ = 0.96, g = 9.81 and r = 15, so

v =
√

0.96× 9.81× 15 = 11.9.

So the car will skid if it drives round the roundabout at more than 11.9 m s−1 (nearly 27 mph).
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(b) What would be the radius of roundabout that would enable a car to drive around it safely in dry
conditions at 30 m s−1 (nearly 70 mph)?

Your solution

Answer
For this part of the question, the speed around the roundabout is known and the safe radius is to
be found. Further rearrangement of the expression used in part (a) gives

r =
v2

µg
.

Hence

r =
302

0.96× 9.81
= 95.6.

In reality drivers should not be exactly at the limits of the friction force while going round the
roundabout. There should be some safety margin. So the roundabout should have a radius of at
least 100 m to allow cars to drive round it at 30 m s−1.

(c) What would be the safe radius of this roundabout when conditions are wet so that the coefficient
of friction between the car and the road is reduced by a factor of 2?

Your solution

Answer
The form of the equation used in part (b) indicates that if the coefficient of friction is halved (to
0.48) by wet conditions, then the safe radius should be doubled.
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When a cyclist or motorcyclist negotiates a circular bend at constant speed, the forces experienced
at the points of contact between the tyres and the road are a frictional force towards the centre of
the bend and the upward reaction to the combined weight of the cyclist and the cycle (see Figure
20). These forces can be combined into a resultant that acts along an angle to the vertical. Suppose
that the combined mass is m and that the coefficient of friction between the tyres and road surface
is µ.

i

j

θ

reaction

friction

Figure 20
Forces on cycle tyres and the angle for cyclist comfort on a circular bend.

The net driving force is ignored.

The total force vector may be written

F = mg(µi + j)

and the angle θ is given by

tan θ =
µmg

mg
= µ so that θ = tan−1 µ.

Also, as argued previously (Equation (2.3)), we must have µ ≥ v2

gr
, which means that

θ ≥ tan−1

(
v2

gr

)
To be comfortable while riding, the cyclist likes to feel that the total force is vertical. So when
negotiating the bend, the cyclist tilts towards the bend so that the resultant force acts along a ‘new
vertical’.
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Example 10
(a) Calculate the angular velocity of the Earth in radians per second, as-

suming that the Earth rotates once about its axis in 24 hours.

(b) A synchronous communications satelite is launched into an orbit around
the equator and appears to be stationary when viewed from the Earth.
Calculate the radius of the satellite’s orbit, given that g = 9.81 m s−2

and that the radius of the Earth is 6.378×106 metres.

Solution

(a) The angular velocity of the Earth is

2π

24× 60× 60
= 7.272× 10−5 radians per second.

(b) According to Newtonian theory of gravitation the attraction due to gravity at the Earth’s

surface, for a mass m, should be
GMm

R2
, which is set equal to mg in elementary calcu-

lations. Thus we must have g =
GM

R2
, so that the product GM equals

gR2 = 9.81× (6.378)2 × 1012 = 3.991× 1014 m3/s2.

For a circular satellite orbit of radius r, the gravitational force must equal mass times
inward acceleration. For a mass m travelling at orbital speed v and with orbital angular
velocity ω, the theory of circular orbits gives the result that the inward acceleration is

v2/r

ω2r
.

The equation ‘force equals mass times acceleration’ thus gives:

GMm

r2
= mω2r.

We wish to ensure that the value of ω for the satellite orbit equals the value of ω for the

Earth’s rotation. The equation above gives the result: r3 =
GM

ω2
=

gR2

ω2

and the value of ω to be used is that which has already been calculated. This gives the
result

r3 =
3.991× 1014

(7.272× 10−5)2
= 7.547× 1022 m3

Taking the cube root gives r = 4.23 × 107 metres. The radius of the satellite orbit is
thus about 6.6 times the Earth’s radius.
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Task

The pedals on a bicycle drive the chain ring, which moves the chain. The chain
passes around the sprocket (gear wheel) attached to the rear wheel and hence the
rear wheel and the bicycle are driven (see diagram). There are cog teeth of equal
width (d) cut into both the chain ring and the sprocket. If there are n1 teeth in the
chain ring and n2 teeth in the sprocket then n1/n2 is the gear ratio. Suppose that
the radii of the chain ring, sprocket and rear wheel are r1, r2 and r respectively
and that the angular velocities of the chain ring and rear wheel are ω1 and ω2

respectively.

sprocket

chain ring
r

r2

r1

Bicycle drive system.

(a) Write down an expression for the velocity (u) of the bicycle in terms of the angular velocity of
the rear wheel:

Your solution

Answer

u = rω2

(b) Write down the relationship between the velocity of the sprocket and the velocity of the chain
ring:

Your solution

Answer

r1ω1 = r2ω2
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(c) Write down expressions for the circumference of the chain ring and that of the sprocket in terms
of the teeth width and number of teeth:

Your solution

Answer

2πr1 = n1d, 2πr2 = n2d

(d) Hence derive a relationship between the angular velocities and the gear ratio:

Your solution

Answer

From (b) and (c),
n1d

2π
ω1 =

n2d

2π
ω2 or n1ω1 = n2ω2, so gear ratio =

ω2

ω1

(e) Calculate the speed of the bicycle if the cyclist is pedalling at one revolution per second, the
radius of the rear wheel is 0.34 m and the gear ratio is 4:

Your solution

Answer

From (a) and (d), u = r(n1/n2)ω1 = 0.34(4)(2π) = 8.55 m s−1 (about 19 mph).
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2. Amusement rides
The design of amusement rides is intended to make the forces experienced by passengers as exciting
as possible. High speeds are not enough. The production of accelerations of up to four times
that due to gravity and occasional feelings of near-weightlessness are deliberate design goals. The
accelerations may not only be in the forward or backward directions from the passengers’ perspective
but also sideways. Sideways accelerations are more limited than backwards or forwards ones, since
they are less welcome to passengers and also pose particular problems for the associated structures.
Upward accelerations of greater than g are avoided because of the safety risk and the need for
reliable constraints to prevent passengers ‘floating’ out of the carriages. The rates at which the
forces, or accelerations, change are important in producing the overall sensation also. The rate
of change of acceleration is called jerk. Even the rate of change of jerk, called jounce, may be
of interest. On roller-coasters the height, the tightness and the twistiness of turns in the track
are the main parameters that influence the thrill of riding on them. Another factor that relates
to thrill or discomfort is the degree of mismatch between what is observed and what is felt. For
example it is odd to feel as though one’s weight is acting in some other direction than the perceived
vertical. In this regard the magnitude of the force that is experienced may not be as important as its
direction. Although we consider only two dimensions in this Workbook, the design of roller-coasters
requires calculations and considerations in 3D. We shall consider some particular examples of forces
experienced by passengers. We start by exploring the forces that contribute to what we feel when
riding in a vehicle. Then we shall look at the forces experienced by passengers on amusement rides
ranging from rotors to roller-coasters.

R

W

Figure 21: Forces on a seated passenger
Fearsome forces

The experiences we have on amusement rides include those of being subjected to linear and sideways
accelerations that are sensed by the balancing system close to our ears and can make us feel giddy.
Potentially more ‘enjoyable’ are sensations of unfamiliar compressive forces that act on our bodies
through the vehicle in which we are travelling.

F

N

W

Figure 22: Forces when seated and being accelerated horizontally

Imagine that you are sitting on a stool, which is sufficiently tall so that your feet are not touching the
ground. What do you feel? Your weight is acting vertically downward. However you feel an upward
force, which is the normal reaction of the stool to your weight. This reaction is pushing you upward
(see Figure 21). Of course the total force on you is zero. Consequently there is a difference in this
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case between the total force on you, which includes gravity, and the force that you experience which
excludes gravity.

On the other hand if you are sitting facing forwards in a vehicle that is accelerating forwards on a flat
track then you will experience the same acceleration as the vehicle, through the seat which pushes
you forwards (see Figure 22). The forward force from the seat combines with the normal reaction to
give a resultant that is not vertical. This simple example suggests that the force experienced by a
passenger during an amusement ride can be calculated by adding up all the component forces except
for the passenger’s weight.

Example 11
(a) Calculate the horizontal and vertical components of the force F experienced by
a passenger of mass 100 kg seated in a rollercoaster carriage that starts from rest
and moves in a straight line on a flat horizontal track with a constant acceleration
such that it is moving at 40 m s−1 after 5 s.

(b) Deduce the magnitude and direction of the force experienced by the passenger.

Solution

(a) Consider first the acceleration of the passenger’s seat. The coordinate origin is chosen at
the start of motion. The x-axis is chosen along the direction of travel, with unit vector
i, and the y-axis is vertical with y positive in the upward direction, with unit vector j.
The acceleration a may be calculated from

a =
dv

dt
= ai

or v = ati + c. When t = 0, v = 0, so c = 0. When t = 5, v = 40i. Hence 40 = 5a or
a = 8. The acceleration in the direction of travel is 8 m s−2, so the component of the
force F in the direction of travel is given by ma = 100×8 N = 800 N. The seat exerts a
force on the passenger that balances the force due to gravity i.e. the passenger’s weight.
So the vertical component of the force on the passenger is mg = 100 × 9.81 N = 981
N. Hence the total force experienced by the passenger may be expressed as

F = 800i + 981j.

This is the total force exerted by the vehicle on the passenger. The force exerted by the
passenger on the vehicle is the direct opposite of this i.e. −800i− 981j.

(b) The magnitude of the total force is
√

8002 + 9812 N ≈ 1300 N and the total force
experienced by the passenger is at an angle with respect to the horizontal equal to
tan−1(981/800) ≈ 51◦.

Here we considered the sudden application of a constant acceleration of 8 m s−2 which
will cause quite a jerk for the passengers at the start. On some rides the acceleration
may be applied more smoothly.
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Example 12
Calculate the total force experienced by the passenger as a function of time if the
horizontal component of acceleration of the vehicle is given by

8 sin

(
πt

10

)
0 ≤ t ≤ 5

8 t > 5

Solution

With this horizontal component of acceleration, the component of force experienced by the passenger
in the direction of motion is (see Figure 23)


800 sin

(
πt

10

)
for 0 ≤ t ≤ 5

800 for t > 5

800 sin

(
t

10
π

)

0
1 2 3 4 5

500

1000

0
t

Figure 23: Horizontal component of force

The vertical component remains constant at 981 N, as in Example 11. The total force may be
written

F =


800 sin

(
πt

10

)
i + 981j 0 ≤ t ≤ 5

800i + 981j t > 5
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Task

The idea of an amusement ride called the ‘Rotor’ is to whirl passengers around in
a cylindrical container at increasing speed. When the rotation is sufficiently fast
the floor is lowered but the passengers remain where they are supported by friction
against the wall. Given a rotor radius of 2.2 m and a coefficient of friction of 0.4
calculate the minimum rate of revolution when the floor may be lowered.

Your solution

Answer
The reaction of the wall on the passenger will have the same magnitude as the force causing motion

in a circle i.e.
mv2

r
= R. The vertical friction force between the passenger and the wall is µR.

The passenger of mass will remain against the wall when the floor is lowered if µR ≥ mg. Hence

it is required that
µmv2

r
≥ mg or v ≥

√
rg

µ
. Since v = ωr, where ω is the angular velocity, the

minimum required angular velocity is ω =

√
g

µr
and the corresponding minimum rate of revolution

n =
ω

2π

√
g

µr
. Hence with r = 2.2 and µ = 0.4, the rate of revolution must be at least 0.53 revs

per sec or at least 32 revs per min.
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Task

In an amusement ride called the ‘Yankee Flyer’, the passengers sit in a ‘boat’,
which stays horizontal while executing a series of rotations on an arm about a
fixed centre. Given that the period of rotation is 2.75 s, calculate the radius of
rotation that will give rise to a feeling of near weightlessness at the top of each
rotation.

Your solution

Answer
To achieve a feeling of ‘near-weightlessness’ near the top of the rotation, the force on the passenger
towards the centre of rotation must be nearly equal and opposite to the reaction force of the seat

on the passengers i.e.
mv2

r
= mg. This means that r =

v2

g
. Since v = ωr, this requires that

r =
g

ω2
. The period T =

2π

ω
= 2.75 s, so ω = 2.285 rad s−1. Hence r = 1.879 m.

Example 13
An amusement ride carriage moves along a track at constant velocity in the hori-
zontal (x-) direction. It encounters a bump of horizontal length L and maximum
height h with a profile in the vertical plane given by

y(x) =
h

2

(
1− cos

2πx

L

)
, 0 ≤ x ≤ L.

Calculate the variation of the vertical component of force exerted on a passenger
by the seat of the carriage with horizontal distance (x) as it moves over the bump.
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Solution

y(x)

x
0

1

2

20 40 60 80 100

Figure 24: Profile of the bump

Figure 24 shows a graph of y(x) against x for h = 2 and L = 100. Since the component of velocity
of the vehicle in the x-direction is constant, then after time t, the horizontal distance moved, x, is
given by x = ut as long as x is measured from the location at t = 0. Consequently the y-coordinate
may be written in terms of t rather than x, giving

y(t) =
h

2

(
1− cos

2πut

L

)
, 0 ≤ t ≤ L

u
.

The vertical component of velocity is given by differentiating this expression for y(t) with respect
to t.

ẏ(t) =
h

2

2πu

L
sin

(
2πut

L

)
=

hπu

L
sin

(
2πut

L

)
.

The vertical acceleration is given by differentiating this again.

ÿ(t) =
hπu

L

2πu

L
cos

(
2πut

L

)
=

2hπ2u2

L2
cos

(
2πut

L

)
.

Two forces contribute to the vertical force exerted by the seat on the passenger: the constant
reaction to the passenger’s weight and the variable vertical reaction associated with motion over the
bump. The magnitude of the total vertical force R N exerted on the passenger by the seat is given
by

R = mg + mÿ(t) = mg + m
2hπ2u2

L2
cos

(
2πut

L

)
= mg

(
1 +

2hπ2u2

gL2
cos

(
2πut

L

))
.

Some horizontal force may be needed to keep the vehicle moving with a constant horizontal com-
ponent of velocity and ensure that the net horizontal component of acceleration is zero. Since the
horizontal component of velocity is constant, there is no horizontal component of acceleration and
no net horizontal component of force. Consequently R = Rj represents the total force exerted on
the passenger. Figure 25 shows a graph of R/mg for h = 2 m, L = 100 m and u = 20 m s−1.

R
mg

x
0 20 40 60 80 100

0.8

1.0

1.2

Figure 25: Vertical force acting on passenger
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Banked tracks
Look back near the end of Section 34.2 subsection 1 which considered the forces on a cyclist trav-
elling around a circular bend of radius R. We were concerned with the way in which cyclists and
motorcyclists bank their vehicles to create a ‘new vertical’ along the direction of the resultant force.
This counteracts the torque that would otherwise encourage the rider to fall over when cornering.
Clearly, passengers in four wheeled vehicles, railway trains and amusement park rides are not able to
bank or tilt their vehicles to any significant extent. However what happens if the road or track is

banked instead? If the road or track is tilted or banked at angle θ = tan−1

(
v2

gr

)
to the horizontal,

then, at speed v around the circular bend, it is possible to obtain the same result as that achieved
by tilting the cycle or motorcycle (see Figure 26).

reaction
resultant

friction

Banked road
or track

Resultant force

θ

i

j
θ

θ

Figure 26: Equivalence of tilted cyclists and banked roads

Example 14
Calculate the angle at which a track should be tilted so that passengers in a railway
carriage moving at a constant speed of 20 m s−1 around a bend of radius 100 m
feel the resultant ‘reaction’ force as though it were acting vertically through their
centre line.

Solution

The angle of the resultant force on passengers if the track were horizontal is given by

θ = tan−1

(
v2

gr

)
,

where v = 20, r = 100 and g = 9.81.

Hence θ = 22.18◦ and the track should be tilted at 22.18◦ to the horizontal for the resultant force
to act at right-angles to the track.
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Example 15
The first three seconds of an amusement ride are described by the position coor-
dinates

x(t) = 10− 10 cos(0.5t)
y(t) = 20 sin(0.5t)

(0 < t < 3)

in the horizontal plane where x and y are in m.

(a) Calculate the velocity and acceleration vectors.

(b) Hence deduce the initial magnitude and direction of the acceleration
and the magnitude and direction of the acceleration after three seconds.

Solution

y(t)

x(t)
0 5 10

0

10

20

Figure 27: Path of ride

In this Example, the path of the ride is not circular (see Figure 27). In fact it is part of an ellipse.
If we choose unit vectors i along the x-direction and j along the y-direction, and origin at t = 0,
the position vector may be written

r(t) = (10− 10 cos(0.5t))i + 20 sin(0.5t)j.

The velocity vector is obtained by differentiating this with respect to time.

v(t) = 5 sin(0.5t)i + 10 cos(0.5t)j.

The acceleration vector is obtained by differentiating again.

a(t) = 2.5 cos(0.5t)i− 5 sin(0.5t)j

At t = 0, a(t) = 2.5i. So the initial acceleration is 2.5 m s−2 in the x-direction.

At t = 3, a(t) = 2.5 cos(1.5)i− 5 sin(1.5)j = 0.177i− 0.487j.

So after three seconds the acceleration is 4.99 m s−2 at an angle of 88◦ in the negative y-direction.
This means a sideways acceleration of about 0.5g towards the inside of the track and almost at
right-angles to it.
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Engineering Example 1

Car velocity on a bend

Problem in words

A road has a bend with radius of curvature 100 m. The road is banked at an angle of 10◦. At what
speed should a car take the bend in order not to experience any (net) side thrust on the tyres?

Mathematical statement of the problem

Figure 28 below shows the forces on the car.

10◦

mg

R

mv2

r

Figure 28: A vehicle rounding a banked bend in the road.

In the figure R is the reactive force of the ground acting on the vehicle. The vehicle provides a force
of mg, the weight of the vehicle, operating vertically downwards. The vehicle needs a sideways force

of
mv2

r
in order to maintain the locally circular motion.

We have used the following assumptions:

(a) The sideways force needed on the vehicle in order to maintain it in circular motion (called the

centripetal force) is
mv2

r
where r is the radius of curvature of the bend, v is the velocity and m the

mass of the vehicle.

(b) The only force with component acting sideways on the vehicle is the reactive force of the ground.
This acts in a direction normal to the ground. (That is, we assume no frictional force in a sideways
direction.)

(c) The force due to gravity of the vehicle is mg, where m is the mass of the vehicle and g is the
acceleration due to gravity (≈ 9.8 m s−2). This acts vertically downwards.

The problem we need to solve is ‘What value of v would be such that the component of the reactive

force of the ground exactly balances the sideways force of
mv2

r
?’ This will give us the maximum

velocity at which the vehicle can take the bend.
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Mathematical analysis

We can split the reactive force of the ground into two components. One component is in the
horizontal direction and the other in a vertical direction as in the following figure:

10◦

R

R cos 10◦

R sin 10◦

Figure 29: Reaction forces on the car

The force of
mv2

r
must be provided by a component of the reactive force in the horizontal direction

i.e.

R sin(10◦) =
mv2

r
(1)

However the reactive force must balance the force due to gravity in the vertical direction therefore

R cos(10◦) = mg (2)

We need to find v from the above equations. Dividing Equation (1) by Equation (2) gives

tan(10◦) =
v2

rg
⇒ v2 = rg tan(10◦)

We are given that the radius of curvature is 100 m and that g ≈ 9.8 m s−2. This gives
v2 ≈ 100× 9.8× 0.17633
⇒ v2 ≈ 172.8
⇒ v ≈ 13.15 m s−1 (assuming v is positive)

Interpretation

We have found that the maximum speed that the car can take the bend in order not to experience
any side thrust on the tyres is 13.15 m s−1. This is 13.15 × 60 × 60/1000 kph = 47.34 kph. In
practice, the need for a margin of safety would suggest that the maximum speed round the bend
should be 13 m s−1.
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Exercises

1. A bend on a stretch of railway track has a radius of 200 m. The maximum sideways force on
the train on this bend must not exceed 0.1 of its weight.

(a) What is the maximum possible speed of the train on this bend?

(b) How far before this bend should a train travelling at 30 m s−1 begin to decelarate given
that the maximum braking force of the train is 0.2 of its weight?

(c) What modelling assumptions have you made? Comment on their validity.

2. The diagram shows a portion of track of a one-way fairground ride on which several trains are
to run. AB and CD are straight. BC is a circular arc with the dimension shown. Because
BC is also on a bridge, safety regulations require that the rear of one train must have passed
point C before the front of the next train passes point B. Trains are 30 m long.

144 m

A

B

C D

60◦

O

If the maximum sideways force on a train can be no more than 0.1 of its weight, find the
shortest time it can take for a train to travel from B to C. Hence find the minimum time
between the front of one train passing point B and its rear end passing point C. Recommend
a minimum distance between trains.
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Answers

1. (a) According to Equation (2.2) on page 35, during travel round the bend the sideways force
on the train is given by

Mrω2 =
Mv2

r

The weight of the train is Mg. Given that
Mv2

r
≤ 0.1Mg, the maximum possible speed,

vmax, is given by vmax =
√

0.1rg.

Using r = 200 m and g = 9.81 m s−2, this implies that vmax = 14.0 m s−1 to 3 s.f.

(b) Given initial speed is 30 m s−1, and final speed is 14 m s−1 and maximum braking force
is 0.2 Mg, implying acceleration is −0.2g. Then, using the formula ‘v2 = u2 + 2as’,
where u is initial speed, v its final speed, a is acceleration and s is distance travelled,
gives

20g = 900− 0.4gs or s = 179.358 m.

This suggests that braking should begin about 180 m before the start of the bend.

(c) Assumptions include constant maximum braking, negligible thinking time and no skid-
ding.

2. The shortest time on the circular bend will be taken when the train is moving at the maximum
possible speed.

This will occur when
Mv2

r
= 0.1Mg. If r = 144 m and g = 9.81 m s−2, this implies

vmax = 11.885 m s−1.

The length of BC is 144
π

3
= 150.796 m.

The time taken for any point on the train to move from B to C is
150.796

11.885
= 12.687 s.

So, given that the length of each train is 30 m, to make sure that the rear of one train has
passed C before the front of the next train arrives at B, a minimum time between the trains

of (12.687 +
30

11.885
) s = 15.212 s is required. After including a small safety margin, each

train should be 16 s apart. Assuming that the trains are moving at a constant speed of 11.885
m s−1, this implies that they should be at least 190 m apart.
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