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Learning 

You will learn how to decide whether a set of data fits a particular distribution. You will
also learn about a situation in which hypothesis tests are applied to non-numeric data.
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Introduction
If you are applying statistics to practical problems in industry, you may find that much of your work is
concerned with making decisions concerning probability distributions. Sometimes it is advantageous
to be able to describe the approximate probability distribution followed by a data set obtained ex-
perimentally. For example you may be asked to decide whether a data set is approximately normal.
In order to make such decisions, you will find that you may use the chi-squared test provided that
certain conditions are satisfied. On other occasions you may be given data concerning non-numeric
variables in the form of a contingency table. This is one of those occasions when hypothesis tests
can be applied to non-numeric variables.
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Prerequisites

Before starting this Section you should . . .

• understand how to find probabilities for a
chi-squared distribution ( 40)

• understand the principles of hypothesis
testing ( 41)�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• explain the term goodness-of-fit

• perform hypothesis tests based on the
chi-squared distribution
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1. Goodness-of-fit tests
The aim of a goodness-of-fit test is to determine the underlying nature of the probability distribution
describing the population from which a random sample has been drawn. For example, we may wish
to determine whether the population from which a sample has been drawn has a normal, binomial or
Poisson distribution. While a variety of goodness-of-fit tests exist, the test described here depends
on the χ2-distribution and is usually called the chi-squared test.

We assume that a random sample of size n has been drawn from a population with an unknown
probability distribution and that we wish to determine the nature of that distribution.

• Firstly, if the data are continuous we organize the data into k intervals (often equal but not
necessarily so) in order that we can write down the observed frequency, say Oi, of the ith
interval for 1 ≤ i ≤ k.

• Secondly, we form a hypothesis about the nature of the unknown distribution. That is, we
assume that it is normal, binomial, Poisson or some other appropriate probability distribution.

• Thirdly, we calculate, on the basis of the hypothesis outlined above, the expected frequency,
say Ei, of the ith interval for 1 ≤ i ≤ k. The values of Ei are calculated using the formula

Ei = nPi

where Pi is the probability associated with the interval i.

• Fourthly, we calculate the goodness-of-fit statistic as defined in Key Point 1.

Key Point 1

The goodness-of-fit statistic is given by

W =
k∑

i=1

(Oi − Ei)
2

Ei

It can be shown that, if the assumption made about the nature of the population (normal, binomial,
Poisson etc.) is true then W follows (approximately) a chi-squared distribution with k−p−1 degrees
of freedom. Note that p represents the number of parameters needed to describe the probability
distribution of the population which we have to estimate from the data. For example the normal
distribution has two parameters µ and σ, the binomial distribution has two parameters n and p but
we usually only need to estimate p, while the Poisson distribution has one parameter, µ.

• Fifthly, we reject the hypothesis concerning the nature of the underlying probability distribution
if the calculated value of W exceeds the value of χ2

α,k−p−1 where α is the area in the tail of
the χ2-distribution, typically 5% or 1%.
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Notes

(a) The larger the sample, the more reliable the result since the assertion that W follows
(approximately) a chi-squared distribution improves with increasing sample size.

(b) The size of the expected frequencies should be monitored carefully. Various authors
recommend that minimum expected frequencies of 3, 4 or 5 are acceptable. It is reasonably
safe to accept expected frequencies provided that they are greater than 5 and 10 is
certainly acceptable.

(c) Some authors recommend that the k intervals into which the data are organized are
chosen so that the frequencies in each interval are roughly equal - remember that equal
intervals are not necessary for the test to be performed.

We will now look at two examples of goodness-of-fit tests, the first uses a (discrete) Poisson distri-
bution and the second uses a (continuous) normal distribution. Each worked Example is immediately
followed by a Task for you to do.

Example 1
A manufacturer produces high-quality sheet aluminium for use in highly stressed
aircraft wings. A random sample of 100 sheets is inspected and the number of
faults per sheet recorded. The results are given in the table below.

Number of Faults per Sheet Frequency of Occurrence
0 50
1 24
2 14
3 8
4 4

Suggest a possible probability distribution from which the sample may have been
drawn and perform a chi-squared test to determine the validity of your suggestion.

Solution

The data are already given in 5 classes with observed frequencies as shown. We will assume that
the underlying distribution is Poisson and calculate the expected frequencies accordingly using the

Poisson formula P(X = r) =
e−µµr

r!
We need the value of the mean.

This is calculated as µ =
50× 0 + 24× 1 + 14× 2 + 8× 3 + 4× 4

100
= 0.92

Hence the Poisson probabilities and the corresponding expected frequencies are:

p0 = P(X = 0) =
e−µµ0

0!
= e−0.92 = 0.399, E0 = 39.9

p1 = P(X = 1) =
e−µµ1

1!
= e−0.92 × 0.92 = 0.367, E1 = 36.7
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Solution (contd.)

p2 = P(X = 2) =
e−µµ2

2!
=

e−0.92 × 0.922

2
= 0.169, E2 = 16.9

p3 = P(X = 3) =
e−µµ3

3!
=

e−0.92 × 0.923

6
= 0.052, E3 = 5.2

p4 = P(X ≥ 4) = 1− (0.399 + 0.367 + 0.169 + 0.052) = 0.013, E4 = 1.3

Note that in calculating p4 we have ensured that our probabilities sum to unity.

Since the last frequency is very small we will combine the last two and use 4 classes so that O3 = 12
and E3 = 6.5.

The test statistic is

W =
3∑

i=0

(Oi − Ei)
2

Ei

=
(50− 39.9)2

39.9
+

(24− 36.7)2

36.7
+

(14− 16.9)2

16.9
+

(12− 6.5)2

6.5
= 12.103

and the number of degrees of freedom is k − p− 1 = 4− 1− 1 = 2 so that the critical value from
Table 1 (at the end of the Workbook) is χ2

0.05,2 = 5.99. Clearly 12.103 > 5.99 and we must reject
the null hypothesis that the underlying distribution is Poisson.

Task

A manufacturer produces electronic components for use in computer controlled
monitoring systems. A random sample of 100 components is inspected and the
number of faults per component recorded. The results are given in the table below.

Number of Faults per Component Frequency of Occurrence
0 45
1 35
2 16
3 4

Perform a chi-squared test to determine the validity of the assumption that the
occurrence of faults in the components is Poisson.

Your solution
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Answer
The data are given in 4 classes with observed frequencies as shown. The expected frequencies using
the Poisson formula with a mean

µ =
45× 0 + 35× 1 + 16× 2 + 4× 3

100
= 0.79

are

p0 = P(X = 0) =
e−µµ0

0!
= e−0.79 = 0.454, E0 = 45.4

p1 = P(X = 1) =
e−µµ1

1!
= e−0.79 × 0.79 = 0.359, E1 = 35.9

p2 = P(X = 2) =
e−µµ2

2!
=

e−0.79 × 0.792

2
= 0.142, E2 = 14.2

p3 = P(X ≥ 3) = 1− (0.454 + 0.359 + 0.142) = 0.045, E3 = 4.5

The last frequency is small but since it is greater than 3 we will allow its use.

The test statistic is

W =
3∑

i=0

(Oi − Ei)
2

Ei

=
(45− 45.4)2

45.4
+

(35− 35.9)2

35.9
+

(16− 14.2)2

14.2
+

(4− 4.5)2

4.5
= 0.310

and the number of degrees of freedom is k − p− 1 = 4− 1− 1 = 2 so that the critical value from
tables is χ2

0.05,2 = 5.99. Clearly 0.310 < 5.99 and we accept the null hypothesis that the underlying
distribution is Poisson. Note that the decision to accept the value E3 = 4.5 is fairly marginal and
that some personal judgement in such situations as to whether such values should be accepted or
combined with another class is unavoidable.

Task

Using the data of the previous Task but combining the expected frequencies of
the last two classes, perform a chi-squared test to determine the validity of the
assumption that the occurrence of faults in the components is Poisson.

Your solution
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Answer
The data are given in 4 classes with observed frequencies as shown. The expected frequencies using
the Poisson formula with a mean

µ =
45× 0 + 35× 1 + 16× 2 + 4× 3

100
= 0.79

are

p0 = P(X = 0) =
e−µµ0

0!
= e−0.79 = 0.454, E0 = 45.4

p1 = P(X = 1) =
e−µµ1

1!
= e−0.79 × 0.79 = 0.359, E1 = 35.9

p2 = P(X = 2) =
e−µµ2

2!
=

e−0.79 × 0.792

2
= 0.142, E2 = 14.2

p3 = P(X ≥ 3) = 1− (0.454 + 0.359 + 0.142) = 0.045, E3 = 4.5

We will combine the expected frequencies of the last two classes and use 3 classes in total with
expected frequencies of E0 = 45.4, E1 = 35.9, E2 = 18.7.

The test statistic is

W =
3∑

i=0

(Oi − Ei)
2

Ei

=
(45− 45.4)2

45.4
+

(35− 35.9)2

35.9
+

(20− 18.7)2

18.7
= 0.113

and the number of degrees of freedom is k − p− 1 = 4− 1− 1 = 2 so that the critical value from
Table 1 (at the end of the Workbook) is χ2

0.05,2 = 5.99. Clearly 0.113 < 5.99 and we accept the
null hypothesis that the underlying distribution is Poisson. Note that the decision to combine the
last two classes has not, in this case, affected the acceptance of the null hypothesis.

Example 2

A quality control engineer is given the job of checking the voltage output char-
acteristics of a circuit component in a CD player. After checking 100 randomly
selected components and plotting a histogram of the results, the engineer con-
cludes that the mean output of the 100 checked components is x̄ = 6.12 volts,
that the standard deviation is s = 0.1 volts and that the voltage distribution is
probably normal. Choose a suitable test to decide whether the assumption of
normality is valid at the 5% level of significance.
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Solution

The engineer decides to use a chi-squared test to test the assumption of normality and follow the
(common) practice of ensuring that the expected frequencies are equal. To do this, the data are
put into eight equal classes and the class boundaries calculated as follows.

From the standard normal distribution the Z values corresponding to class boundaries giving a
probability of 0.125 (i.e. 1/8) may be read off from tables as 0, 0.32, 0.675, 1.15 and ∞ for positive
values and 0,−0.32,−0.675,−1.15 and −∞ for negative values. Using

Z =
x− x̄

s
→ x = x̄ + Z.s

the class boundaries are calculated to be: 6.005, 6.053, 6.088, 6.120, 6.152, 6.188, 6.235. This gives
the eight classes, the observed frequencies found by the engineer (you are given this information
here), and the expected frequencies as:

Classes Observed Frequencies Oi Expected Frequencies Ei

x < 6.005 8 12.5
6.005 ≤ x < 6.053 11 12.5
6.053 ≤ x < 6.088 16 12.5
6.088 ≤ x < 6.120 19 12.5
6.120 ≤ x < 6.152 18 12.5
6.152 ≤ x < 6.188 13 12.5
6.188 ≤ x < 6.235 9 12.5
6.235 ≤ x 6 12.5

The hypotheses are: H0: distribution is normal, H1 : distribution is not normal

The test statistic is

W =
8∑

i=1

(Oi − Ei)
2

Ei

=
(8− 12.5)2

12.5
+

(11− 12.5)2

12.5
+

(16− 12.5)2

12.5
+

(19− 12.5)2

12.5
+

(18− 12.5)2

12.5

+
(13− 12.5)2

12.5
+

(9− 12.5)2

12.5
+

(16− 12.5)2

12.5

= 1.62 + 0.18 + 0.98 + 3.38 + 2.42 + 0.02 + 0.98 + 3.38 = 12.96

and the number of degrees of freedom is k − p− 1 = 8− 2− 1 = 5 so that the critical value from
Table 1 is χ2

0.05,5 = 11.07.

Since 11.07 < 12.96 we have sufficient evidence to reject the null hypothesis and so the engineer
should conclude that the distribution of voltages is not normal.

8 HELM (2008):
Workbook 42: Goodness of Fit and Contingency Tables



®

Task

An electrical engineer working for a Health and Safety Executive measures the
radiation emitted through the closed doors of 100 used microwave ovens. The
measurements, in mw cm−2, are given in the table below.

0.19 0.16 0.14 0.20 0.17 0.21 0.18 0.22 0.26 0.23
0.13 0.17 0.16 0.21 0.18 0.22 0.20 0.23 0.16 0.26
0.19 0.16 0.14 0.20 0.18 0.21 0.19 0.22 0.27 0.24
0.12 0.17 0.15 0.20 0.18 0.22 0.19 0.23 0.29 0.25
0.06 0.16 0.14 0.20 0.17 0.21 0.18 0.22 0.26 0.23
0.13 0.17 0.16 0.20 0.18 0.22 0.19 0.23 0.30 0.25
0.19 0.17 0.14 0.20 0.18 0.21 0.19 0.22 0.27 0.24
0.11 0.17 0.15 0.20 0.18 0.21 0.19 0.23 0.27 0.24
0.13 0.17 0.16 0.21 0.18 0.22 0.19 0.23 0.33 0.25
0.13 0.17 0.16 0.21 0.18 0.22 0.19 0.23 0.36 0.26

The mean radiation of the checked ovens is x̄ = 0.20 mw cm−2, and the standard
deviation is s = 0.05 mw cm−2. Verify that the table below giving the eight classes
corresponding to the observed and expected frequencies shown is correct.

Classes Observed Frequencies Oi Expected Frequencies Ei

x < 0.143 11 12.5
0.143 ≤ x < 0.166 10 12.5
0.166 ≤ x < 0.184 19 12.5
0.184 ≤ x < 0.200 10 12.5
0.200 ≤ x < 0.216 16 12.5
0.216 ≤ x < 0.234 17 12.5
0.234 ≤ x < 0.258 6 12.5
0.258 ≤ x 11 12.5

Use a chi-squared test to decide whether the radiation readings obtained from the
ovens are normally distributed at the 5% level of significance.

Your solution
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Answer
Although the choice of class boundaries is arbitrary, for convenience we choose boundaries to make
eight classes with equal probabilities of 0.125.

From the standard normal distribution the Z values corresponding to class boundaries giving a
probability of 0.125 may be read off from tables as 0, 0.32, 0.675, 1.15 and ∞ for positive values
and 0,−0.32,−0.675,−1.15 and −∞ for negative values. Using

Z =
x− x̄

s
→ x = x̄ + Z.s

the class boundaries are calculated to be:

0.143, 0.166, 0.184, 0.200, 0.216, 0.234, 0.258

This gives the eight classes, the observed frequencies found by the engineer and the expected
frequencies as given in the table above.

The hypotheses are: H0: distribution is normal, H1 : distribution is not normal.

The test statistic is

W =
8∑

i=1

(Oi − Ei)
2

Ei

=
(11− 12.5)2

12.5
+

(10− 12.5)2

12.5
+

(19− 12.5)2

12.5
+

(10− 12.5)2

12.5
+

(16− 12.5)2

12.5

+
(17− 12.5)2

12.5
+

(6− 12.5)2

12.5
+

(11− 12.5)2

12.5

= 0.18 + 0.5 + 3.38 + 0.5 + 0.98 + 1.62 + 3.38 + 0.18 = 10.72

and the number of degrees of freedom is k − p− 1 = 8− 2− 1 = 5 so that the critical value from
Table 1 is χ2

0.05,5 = 11.07.

Since 10.72 < 11.07 we do not have sufficient evidence to reject the null hypothesis and so the
engineer should conclude that the distribution of microwave radiation readings taken from the ovens
is normal.

10 HELM (2008):
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Exercises

1. A factory produces portable CD players. Every week a sample of ten players is selected and
subjected to 100 hours of continuous use. At the end of this time the players are tested and the
number not reaching a specified standard is recorded. The numbers recorded in 100 consecutive
weeks are given below. Test the hypothesis that the data come from a binomial distribution.
Use the 5% level of significance.

Number failing standard 0 1 2 3 4 5
Number of weeks 34 24 19 14 9 0

2. A highway engineer records the numbers of vehicles passing a point in a road in 120 consecutive
one-minute intervals, as follows. Test the hypothesis that the data come from a Poisson
distribution. Use the 5% level of significance.

Number of vehicles 0 1 2 3 4 5 6 7 8 9 10 11
Number of intervals 0 5 10 20 30 20 15 7 6 4 2 1

3. In a test of a device to generate electricity from wave power at sea, 60 observations are made
of the root mean square bending moment Y of a component (in newton metres). The data
are summarised as follows. The sample mean is 5.08 and the sample variance is 3.29. Test the
hypothesis that Y has a normal distribution. Use the 5% level of significance.

Class Frequency Class Frequency
Y ≤ 2 1 6 < Y ≤ 7 5

2 < Y ≤ 3 4 7 < Y ≤ 8 4
3 < Y ≤ 4 12 8 < Y ≤ 9 2
4 < Y ≤ 5 18 9 < Y ≤ 10 2
5 < Y ≤ 6 11 10 < Y 1

4. Eighty aircraft components are tested until they fail. The failure times T in hours are sum-
marised as follows. The sample mean is 6434. Test the hypothesis that the distribution of T
is exponential. Use the 5% level of significance.

Class Frequency Class Frequency
0 < T ≤ 2000 11 10000 < T ≤ 12000 3

2000 < T ≤ 4000 21 12000 < T ≤ 14000 5
4000 < T ≤ 6000 19 14000 < T ≤ 16000 1
6000 < T ≤ 8000 9 16000 < T ≤ 18000 3
8000 < T ≤ 10000 4 18000 < T 4

HELM (2008):
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Answers

1. Total number of failures: 0× 34 + 1× 24 + · · ·+ 4× 9 = 140.

Mean number of failures per week: 140/100 = 1.4.

Estimate of p : 1.4/5 = 0.28.

Use binomial(5, 0.28) distribution.

P(X = j) =

(
5
j

)
0.28j0.725−j

No. failing Probability Frequency
Expected Observed

0 0.1935 19.35 34
1 0.3762 37.62 24
2 0.2926 29.26 19
3 0.1138 11.38 14
4 0.0221 2.21 9
5 0.0017 0.17 0

Some expected frequencies are too small so we combine neighbouring classes.

No. failing Probability Frequency
Expected Observed

0 0.1935 19.35 34
1 0.3762 37.62 24
2 0.2926 29.26 19

3,4,5 0.1376 13.76 23

Test statistic:

W =
(34− 19.35)2

19.35
+ · · ·+ (23− 13.76)2

13.76
= 25.825.

Degrees of freedom: 4− 1− 1 = 2 (4 classes, 1 estimated parameter).

Critical value: χ2
2(5%) = 5.991.

The test statistic is significant at the 5% level. We reject the null hypothesis. We conclude that
the data do not come from a binomial distribution. There seems to be an excess of large and small
counts.

12 HELM (2008):
Workbook 42: Goodness of Fit and Contingency Tables



®

Answers

2. Total number of vehicles: 0× 0 + 1× 5 + 2× 10 + · · ·+ 11× 1 = 559.

Mean number of vehicles per minute: 559/120 = 4.658.

Use Poisson(4.658) distribution.

P(X = j) =
e−4.6584.658j

j!
.

No. vehicles Probability Frequency
Expected Observed

0 0.00949 1.14 0
1 0.04418 5.30 5
2 0.10290 12.35 10
3 0.15977 19.17 20
4 0.18606 22.33 30
5 0.17333 20.80 20
6 0.13456 16.15 15
7 0.08954 10.74 7
8 0.05214 6.26 6
9 0.02698 3.24 4

10 0.01257 1.51 2
≥ 11 0.00848 1.02 1

Some expected frequencies are too small so we combine neighbouring classes.

No. vehicles Probability Frequency
Expected Observed

0,1 0.05367 6.44 5
2 0.10290 12.35 10
3 0.15977 19.17 20
4 0.18606 22.33 30
5 0.17333 20.80 20
6 0.13456 16.15 15
7 0.08954 10.74 7
8 0.05214 6.26 6

≥ 9 0.04803 5.76 7

Test statistic:

W =
(5− 6.44)2

6.44
+ · · ·+ (7− 5.76)2

5.76
= 5.132.

Degrees of freedom: 9− 1− 1 = 7 (9 classes, 1 estimated parameter).

Critical value: χ2
7(5%) = 14.07.

The test statistic is not significant at the 5% level. We do not reject the null hypothesis. There is
insufficient evidence to conclude that the data do not come from a Poisson distribution.
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Answers

3. Using a N(5.08, 3.29) distribution we can calculate the probabilities for the various class intervals.
For example,

P(5 < Y ≤ 6) = Φ

(
6− 5.08√

3.29

)
− Φ

(
5− 5.08√

3.29

)
= Φ(0.5072)− Φ(−0.0441)

= Φ(0.5072) + Φ(0.0441)− 1

= 0.694 + 0.518− 1 = 0.694− 0.482 = 0.212.

Bending moment Y Probability Frequency
Expected Observed

Y ≤ 2 0.045 2.70 1
2 < Y ≤ 3 0.081 4.86 4
3 < Y ≤ 4 0.150 9.00 12
4 < Y ≤ 5 0.206 12.36 18
5 < Y ≤ 6 0.212 12.72 11
6 < Y ≤ 7 0.161 9.66 5
7 < Y ≤ 8 0.091 5.46 4
8 < Y ≤ 9 0.039 2.34 2
9 < Y ≤ 10 0.012 0.72 2

10 < Y 0.003 0.18 1

Some expected frequencies are too small so we combine neighbouring classes.

Bending moment Y Probability Frequency
Expected Observed

Y ≤ 3 0.126 7.56 5
3 < Y ≤ 4 0.150 9.00 12
4 < Y ≤ 5 0.206 12.36 18
5 < Y ≤ 6 0.212 12.72 11
6 < Y ≤ 7 0.161 9.66 5
7 < Y ≤ 8 0.091 5.46 4

8 < Y 0.054 3.24 5

Test statistic:

W =
(5− 7.56)2

7.56
+ · · ·+ (5− 3.24)2

3.24
= 8.267.

Degrees of freedom: 7− 2− 1 = 4 (7 classes, 2 estimated parameters).

Critical value: χ2
4(5%) = 9.488.

The test statistic is not significant at the 5% level. We do not reject the null hypothesis. There is
insufficient evidence to conclude that the data do not come from a normal distribution.
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Answers

4. The sample mean is 6434. We estimate λ using 1/6434 = 1.554 × 10−4. We use an
exponential(1.554× 10−4) distribution. For example

P(2000 < T ≤ 4000) = {1− exp(−4000× 1.544× 10−4)} − {1− exp(−2000× 1.544× 10−4)}
= exp(−2000/6434)− exp(−4000/6434)

= exp(−0.3108)− exp(−0.6217)

= 0.733− 0.537 = 0.196

Failure time T Probability Frequency
Expected Observed

0 < T ≤ 2000 0.267 21.36 11
2000 < T ≤ 4000 0.196 15.68 21
4000 < T ≤ 6000 0.143 11.44 19
6000 < T ≤ 8000 0.106 8.48 9
8000 < T ≤ 10000 0.077 6.16 4
10000 < T ≤ 12000 0.056 4.48 3
12000 < T ≤ 14000 0.041 3.28 5
14000 < T ≤ 16000 0.031 2.48 1
16000 < T ≤ 18000 0.022 1.76 3

18000 < T 0.061 4.88 4

Some expected frequencies are too small so we combine neighbouring classes.

Failure time T Probability Frequency
Expected Observed

0 < T ≤ 2000 0.267 21.36 11
2000 < T ≤ 4000 0.196 15.68 21
4000 < T ≤ 6000 0.143 11.44 19
6000 < T ≤ 8000 0.106 8.48 9
8000 < T ≤ 10000 0.077 6.16 4
10000 < T ≤ 12000 0.056 4.48 3
12000 < T ≤ 14000 0.041 3.28 5
14000 < T ≤ 18000 0.053 4.24 4

18000 < T 0.061 4.88 4

Test statistic:

W =
(11− 21.36)2

21.36
+ · · ·+ (4− 4.88)2

4.88
= 14.18.

Degrees of freedom: 9− 1− 1 = 7 (9 classes, 1 estimated parameter).

Critical value: χ2
7(5%) = 14.07.

The test statistic is significant at the 5% level. We reject the null hypothesis. We conclude that the
data do not come from an exponential distribution. The observed frequency in the first class seems
to be too small.
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