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Introduction
The practical application of statistics to engineering problems met in industry often concerns making
decisions concerning probability distributions. For example you may be asked to decide whether a
data set is approximately normal since much of the statistics you may apply makes this assumption.
On occasions you may have to make such decisions given data concerning non-numeric variables in
the form of a contingency table. Contingency tables are described in detail in this Workbook. This
is one of the relatively rare occasions when hypothesis tests can be applied to non-numeric variables.
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Prerequisites

Before starting this Section you should . . .

• understand thoroughly what is meant by the
term degrees of freedom

• have knowledge of the chi-squared
distribution described in 40�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• explain the term contingency table

• perform hypothesis tests involving data given
as a contingency table
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1. Contingency tables
On occasions, it is possible that the members of a sample taken from a population can be classified
by two different methods. Examples of this are:

(a) articles produced by three machines running during two shifts on a production line;

(b) the failure of electronic components and the position in which they are mounted in a
machine;

(c) the failure under compression testing of steel-alloy components and the rate of cooling
applied during their production.

We can represent the information obtained by observation in such situations in a contingency table.
By using the observed data to estimate expected data on the assumption that the classification
methods are independent, we can use the chi-squared test to investigate the statistical independence
(or otherwise) of the classification methods.

Consider the following contingency table with r rows and c columns. Such a table is referred to as
an r × c contingency table.

1 2 3 . . . c Row Totals
1 O11 O12 O13 . . . O1c R1

2 O21 O22 O23 . . . O2c R2

3 O31 O32 O33 . . . O3c R3
...

...
...

...
...

...
...

r Or1 Or2 Or3 . . . Orc Rr

Column Totals C1 C2 C3 . . . Cc N

Note that N is the total of the row totals and is the same as the total of the column totals, that is,
N is the number of members of the sample taken from a population.

On the basis of the observed data we can estimate the expected frequency, say Eij corresponding to
the observed frequency Oij. This is done as follows.

The probability that a randomly chosen element of the sample appears in row class i and column
class j is given by pij where

pij =
Ri

N
× Cj

N

Hence the required expected frequency is given by Eij which is defined in Key Point 2.

Key Point 2

Expected Frequencies in Contingency Tables

Eij = N × pij = N × Ri

N
× Cj

N
=

Ri × Cj

N

HELM (2008):
Section 42.2: Contingency Tables

17



Using this formula repeatedly, we can calculate the expected frequencies corresponding to the ob-
served frequencies and hence calculate a test statistic W where

W =
c∑

i=1

r∑
j=1

(Oij − Eij)
2

Eij

This formula tells you to calculate
(Oij − Eij)

2

Eij

for every cell in the contingency table and sum them.

It can be shown that, provided N is large, and none of the expected frequencies are too small, say
less than 3, then the quantity

W =
c∑

i=1

r∑
j=1

(Oij − Eij)
2

Eij

follows approximately a chi-squared distribution with (r− 1)× (c− 1) degrees of freedom when the
null hypothesis is true. This number of degrees of freedom arises since each row has r−1 independent
entries and each column has c− 1 independent entries.

Notes

The above statements are correct provided that we can calculate the expected frequencies without
knowing the population parameters. If we have to estimate the population parameters, the number
of degrees of freedom becomes (r−1)×(c−1)−m where m is the number of population parameters
estimated. In the examples given here we shall not need to estimate the population parameters.

To complete the test procedure we note that the null hypothesis assumes class independence. For
example, referring back to Example 2 given at the start of this Section, the null hypothesis would
assume that the failure of electronic components and the position in which they are mounted in a
machine are independent.

Should the test statistic exceed the critical value of χ2 read from Table 1 at (say) the 5% level of
significance, we would reject the null hypothesis and conclude that a relationship of some kind exists
between the classes.

It is worth noting that in some cases (such as the following Example 3) one classification is chosen
deliberately but the other is random while in other cases, both classifications are random. The same
test applies in both cases.
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Example 3
In an experiment to determine the most advantageous position in a machine to
mount an electronic component which may be prone to failure due to excessive
heat build-up, 300 machines are tested with 100 randomly chosen examples of the
component in each of 3 positions. The results obtained were as follows.

Position 1 2 3 Row Totals
Failure 40 30 50 120
Non-failure 60 70 50 180
Column Totals 100 100 100 300

Use a χ2-test at the 5% level of significance to determine whether component
failure is related to mounting position.

Solution

The hypotheses are:

H0: component failure is independent of position,

H1: component failure is not independent of position

The expected frequencies are calculated are follows:

E11 =
120× 100

300
= 40, E12 =

120× 100

300
= 40, E13 =

120× 100

300
= 40

E21 =
180× 100

300
= 60, E22 =

180× 100

300
= 60, E23 =

180× 100

300
= 60

The test statistic is

W =
3∑

i=1

2∑
j=1

(Oij − Eij)
2

Eij

=
(40− 40)2

40
+

(30− 40)2

40
+

(50− 40)2

40
+

(60− 60)2

60
+

(70− 60)2

60
+

(50− 60)2

60

= 0 + 2.5 + 2.5 + 0 + 1.67 + 1.67 = 8.34

and the number of degrees of freedom is (r − 1) × (c − 1) = (2 − 1) × (3 − 1) = 2 so that the
critical value from tables is χ2

0.05,2 = 5.99.

Since 5.99 < 8.34 we reject the null hypothesis and so we should conclude that there is a relationship
between component failure and mounting position. Position 2 seems to be the most favourable and
position 3 the least.
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Task

Washing machines are made on three production lines in a factory. A record is kept
of faults reported, during the guarantee period, in machines produced by each of
the three lines. The faults are classified into three types A, B and C. The results
are given in the table below.

Fault type
Production line A B C Row Totals

1 40 28 34 102
2 27 39 32 98
3 45 26 29 100

Column Totals 112 93 95 300

Use a χ2-test at the 5% level of significance to determine whether fault type is
related to the production line on which the machine was produced.

Your solution
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Answer
The hypotheses are:

H0 : fault type is independent of production line,

H1 : fault type is not independent of production line

The expected frequencies are calculated are follows:

E11 =
102× 112

300
= 38.08, E12 =

102× 93

300
= 31.62, E13 =

102× 95

300
= 32.30

E21 =
98× 112

300
= 36.59, E22 =

98× 93

300
= 30.38, E23 =

98× 95

300
= 31.03

E31 =
100× 112

300
= 37.30, E32 =

100× 93

300
= 31.00, E33 =

100× 95

300
= 31.70

The test statistic is

W =
3∑

i=1

3∑
j=1

(Oij − Eij)
2

Eij

=
(40− 38.08)2

38.08
+

(28− 31.62)2

31.62
+

(34− 32.30)2

32.30
+

(27− 36.59)2

36.59
+

(39− 30.38)2

30.38

+
(32− 31.03)2

31.03
+

(45− 37.30)2

37.30
+

(26− 31.00)2

31
+

(29− 31.70)2

31.7

= 0.097 + 0.414 + 0.089 + 2.512 + 2.446 + 0.030 + 1.590 + 0.806 + 0.230 = 8.214

and the number of degrees of freedom is (r − 1) × (c − 1) = (3 − 1) × (3 − 1) = 4 so that the
critical value from tables is χ2

0.05,4 = 9.49.

Since 8.214 < 9.49 we do not have sufficient evidence to reject the null hypothesis and so we should
conclude that there is no evidence that the distribution of fault types differs between production
lines.
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Exercises

1. A new compound for the drive belt of domestic vacuum cleaners is tested. Twenty cleaners are
fitted with belts made from the new material and twenty are fitted with standard belts. The
cleaners are run for a fixed period after which the belts are examined for signs of wear. The
numbers showing significant wear are counted. The data are as follows.

Wear No wear
Standard 12 8
New compound 6 14

Test the hypothesis that there is no difference between the standard belts and those made
with the new compound in terms of the probability of showing wear. Use the 5% level of
significance.

2. Electronic devices are made on three production lines. Records are kept of faults found on de-
vices made on each line. Faults are classified as “electronics”, “power supply” or “mechanical”.
The data are as follows.

Production Line
1 2 3

Electronic 13 33 15
Power supply 7 4 11
Mechanical 18 10 14

Test the hypothesis that there is no association between production line and type of fault. Use
the 5% level of significance.

Answers

1. Observed frequencies:

Wear No wear Total
Standard 12 8 20
New compound 6 14 20
Total 18 22 40

Expected frequencies: 20× 18/40 = 9, 20× 22/40 = 11.

Wear No wear Total
Standard 9 11 20
New compound 9 11 20
Total 18 22 40

Test statistic W =
∑ (O − E)2

E
=

(12− 9)2

9
+

(8− 11)2

11
+

(6− 9)2

9
+

(14− 11)2

11
= 1 + 0.82 + 1 + 0.82 = 3.636

Degrees of freedom: (2− 1)× (2− 1) = 1.

Critical value: χ2
1(5%) = 3.841.

The result is not significant at the 5% level. There is insufficient evidence to conclude that there
is a difference between the wear rates.
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Answers

2. Observed frequencies:

Production Line
1 2 3 Total

Electronic 13 33 15 61
Power supply 7 4 11 22
Mechanical 18 10 14 42
Total 38 47 40 125

Expected frequencies, e.g. 61× 38/125 = 18.544.

Production Line
1 2 3 Total

Electronic 18.544 22.936 19.520 61
Power supply 6.688 8.272 7.040 22
Mechanical 12.768 15.792 13.440 42
Total 38.000 47.000 40.000 125

Test statistics

W =
∑ (O − E)2

E
=

(13− 18.544)2

18.544
+ · · ·+ (14− 13.440)2

13.440
= 15.860.

Degrees of freedom: (3− 1)× (3− 1) = 4.

Critical value: χ2
4(5%) = 9.488.

The test statistic is significant at the 5% level. We reject the null hypothesis and conclude that
there is an association between fault type and production line. In particular there seems to be an
excess of electronic faults on Line 2.
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χ2
α,ν

f

α

Percentage Points χ2
α,ν of the χ2 distributionTable 1:

α 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005
v
1 0.00 0.00 0.00 0.00 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.01 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.28
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 31.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30
100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

24 HELM (2008):
Workbook 42: Goodness of Fit and Contingency Tables


