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Introduction
This Section contains a compendium of case studies involving physics (or related topics) as an
additional teaching and learning resource to those included in the previous Workbooks. Each case
study may involve several mathematical topics; these are clearly stated at the beginning of each case
study.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have studied the Sections referred to at the
beginning of each Case Study

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• appreciate the application of various
mathematical topics to physics and related
subjects
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SesaCscisyh P Physics Case Study 1

Black body radiation 1

Mathematical Skills

Topic Workbook
Logarithms and exponentials [6]
Numerical integration [31]

Introduction

A common need in engineering thermodynamics is to determine the radiation emitted by a body
heated to a particular temperature at all wavelengths or a particular wavelength such as the wave-
length of yellow light, blue light or red light. This would be important in designing a lamp for example.
The total power per unit area radiated at temperature T (in K) may be denoted by E(λ) where λ is
the wavelength of the emitted radiation. It is assumed that a perfect absorber and radiator, called a
black body, will absorb all radiation falling on it and which emits radiation at various wavelengths
λ according to the formula

E(λ) =
C1

λ5 [eC2/(λT ) − 1]
(1)

where E(λ) measures the energy (in W m−2) emitted at wavelength λ (in m) at temperature T
(in K). The values of the constants C1 and C2 are 3.742 × 10−16 W m−2 and 1.439 × 10−2 m K
respectively. This formula is known as Planck’s distribution law. Figure 1.1 shows the radiation E(λ)
as a function of wavelength λ for various values of the temperature T . Note that both scales are
plotted logarithmically. In practice, a body at a particular temperature is not a black body and its
emissions will be less intense at a particular wavelength than a black body; the power per unit area
radiated by a black body gives the ideal upper limit for the amount of energy emitted at a particular
wavelength.
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Figure 1.1

The emissive power per unit area E(λ) plotted against wavelength (logarithmically) for a black body
at temperatures of T = 100 K, 400 K, 700 K, 1500 K, 5000 K and 10000 K.
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Problem in words

Find the power per unit area emitted for a particular value of the wavelength (λ = 6 × 10−7m).
Find the temperature of the black body which emits power per unit area (E(λ) = 1010 W m−2) at
a specific wavelength (λ = 4× 10−7m)

Mathematical statement of problem

(a) A black body is at a temperature of 2000 K. Given formula (1), determine the value of

E(λ) when λ = 6× 10−7m.

(b) What would be the value of T that corresponds to E(λ) = 1010 W m−2 at a wavelength of

λ = 4× 10−7m (the wavelength of blue light)?

Mathematical analysis

(a) Here, λ = 6× 10−7 and T = 2000. Putting these values in the formula gives

E(λ) = 3.742× 10−16/ (6× 10−7)
5
/
(
e1.439×10−2/6×10−7/2000 − 1

)
= 2.98× 1010 W m−2 (to three significant figures).

(b) Equation (1) can be rearranged to give the temperature T as a function of the wavelength λ
and the emission E(λ).

E(λ) =
C1

λ5 [eC2/(λT ) − 1]
so eC2/(λT ) − 1 =

C1

λ5E(λ)

and adding 1 to both sides gives

eC2/(λT ) =
C1

λ5E(λ)
+ 1.

On taking (natural) logs

C2

λT
= ln

[
C1

λ5E(λ)
+ 1

]
which can be re-arranged to give

T =
C2

λ ln

[
C1

λ5E(λ)
+ 1

] (2)

Equation (2) gives a means of finding the temperature to which a black body must be heated to
emit the energy E(λ) at wavelength λ.

Here, E(λ) = 1010 and λ = 4× 10−7 so (2) gives,

T =
1.439× 10−2

4× 10−7 ln

[
3.742× 10−16

(4× 10−7)× 1010
+ 1

] = 2380 K

HELM (2008):
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Interpretation

Since the body is an ideal radiator it will radiate the most possible power per unit area at any given
temperature. Consequently any real body would have to be raised to a higher temperature than a
black body to obtain the same radiated power per unit area.

Mathematical comment

It is not possible to re-arrange Equation (1) to give λ as a function of E(λ) and T . This is due to
the way that λ appears twice in the equation i.e. once in a power and once in an exponential. To
solve (1) for λ requires numerical techniques but it is possible to use a graphical technique to find
the rough value of λ which satisfies (1) for particular values of E(λ) and T .
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SesaCscisyh P Physics Case Study 2

Black body radiation 2

Mathematical Skills

Topic Workbook
Logarithms and exponentials [6]
Numerical solution of equations [12], [31]

Introduction

A common need in engineering thermodynamics is to determine the radiation emitted by a body
heated to a particular temperature at all wavelengths or a particular wavelength such as the wave-
length of yellow light, blue light or red light. This would be important in designing a lamp for example.
The total power per unit area radiated at temperature T (in K) may be denoted by E(λ) where λ is
the wavelength of the emitted radiation. It is assumed that a perfect absorber and radiator, called a
black body, will absorb all radiation falling on it and which emits radiation at various wavelengths
λ according to the formula

E(λ) =
C1

λ5 [eC2/(λT ) − 1]
(1)

where E(λ) measures the energy (in W m−2) emitted at wavelength λ (in m) at temperature T
(in K). The values of the constants C1 and C2 are 3.742 × 10−16 W m−2 and 1.439 × 10−2 m K
respectively. This formula is known as Planck’s distribution law. Figure 2.1 shows the radiation E(λ)
as a function of wavelength λ for various values of the temperature T . Note that both scales are
plotted logarithmically. In practice, a body at a particular temperature is not a black body and its
emissions will be less intense at a particular wavelength than a black body; the power per unit area
radiated by a black body gives the ideal upper limit for the amount of energy emitted at a particular
wavelength.
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Figure 2.1

The emissive power per unit area E(λ) plotted against wavelength (logarithmically) for a black body
at temperatures of T = 100 K, 400 K, 700 K, 1500 K, 5000 K and 10000 K.

Problem in words

Is it possible to obtain a radiated intensity of 108 W m−2 at some wavelength for any given temper-
ature?
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Mathematical statement of problem

(a) Find possible values of λ when E(λ) = 108 W m−2 and T = 1000

(b) Find possible values of λ when E(λ) = 108 W m−2 and T = 200

Mathematical analysis

The graph of Figure 2.2 shows a horizontal line extending at E(λ) = 108 W m−2. This crosses the
curve drawn for T = 1000K at two points namely once near λ = 10−6 m and once near λ = 2×10−5

m. Thus there are two values of λ for which the radiation has intensity E(λ) = 108 W m−2 both in
the realm of infra-red radiation (although that at λ = 10−6 m=1 µm is close to the visible light). A
more accurate graph will show that the values are close to λ = 9.3× 10−7m and λ = 2.05× 10−5m.
It is also possible to use a numerical method such as Newton-Raphson ( 12.3 and 31.4)
to find these values more accurately. The horizontal line extending at E(λ) = 108 W m−2 does not
cross the curve for T = 200 K. Thus, there is no value of λ for which a body at temperature 200 K
emits at E(λ) = 108 W m−2.
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Figure 2.2

The emissive power per unit area E(λ) plotted against wavelength (logarithmically) for a black body
at temperatures of T = 200 K and T = 1000 K. For T = 100 K an emissive power per unit area of
E(λ) = 108 W m−2 corresponds to either a wavelength λ ≈ 10−6 or a wavelength λ ≈ 2 × 10−5.
For T = 200 K, there is no wavelength λ which gives an emissive power per unit area of E(λ) = 108

W m−2.

Interpretation

Radiation from a black body is dependant both on the temperature and the wavelength. This example
shows that it may not be possible for a black body to radiate power at a specific level, irrespective
of the wavelength, unless the temperature is high enough.
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SesaCscisyh P Physics Case Study 3

Black body radiation 3

Mathematical Skills

Topic Workbook
Logarithms and exponentials [6]
Differentiation [11]

Introduction

A common need in engineering thermodynamics is to determine the radiation emitted by a body
heated to a particular temperature at all wavelengths or a particular wavelength such as the wave-
length of yellow light, blue light or red light. This would be important in designing a lamp for example.
The total power per unit area radiated at temperature T (in K) may be denoted by E(λ) where λ is
the wavelength of the emitted radiation. It is assumed that a perfect absorber and radiator, called a
black body, will absorb all radiation falling on it and which emits radiation at various wavelengths
λ according to the formula

E(λ) =
C1

λ5 [eC2/(λT ) − 1]
(1)

where E(λ) measures the energy (in W m−2) emitted at wavelength λ (in m) at temperature T
(in K). The values of the constants C1 and C2 are 3.742 × 10−16 W m−2 and 1.439 × 10−2 m K
respectively. This formula is known as Planck’s distribution law. Figure 3.1 shows the radiation E(λ)
as a function of wavelength λ for various values of the temperature T . Note that both scales are
plotted logarithmically. In practice, a body at a particular temperature is not a black body and its
emissions will be less intense at a particular wavelength than a black body; the power per unit area
radiated by a black body gives the ideal upper limit for the amount of energy emitted at a particular
wavelength.
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Figure 3.1

The emissive power per unit area E(λ) plotted against wavelength (logarithmically) for a black body
at temperatures of T = 100 K, 400 K, 700 K, 1500 K, 5000 K and 10000 K.

Problem in words

What will be the wavelength at which radiated power per unit area is maximum at any given tem-
perature?

HELM (2008):
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Mathematical statement of problem

For a particular value of T , by means of differentiation, determine the value of λ for which E(λ) is
a maximum.

Mathematical analysis

Ideally it is desired to maximise

E(λ) =
C1

λ5 [eC2/(λT ) − 1]
.

However, as the numerator is a constant, maximising

E(λ) =
C1

λ5 [eC2/(λT ) − 1]

is equivalent to minimising the bottom line i.e.

λ5
[
eC2/(λT ) − 1

]
.

Writing λ5
[
eC2/(λT ) − 1

]
as y, we see that y can be differentiated by the product rule since we can

write

y = uv where u = λ5 and v = eC2/(λT ) − 1

so

du

dλ
= 5λ4

and

dv

dλ
= − C2

λ2T
eC2/(λT ) (by the chain rule), Hence

dy

dλ
= λ5

[
− C2

λ2T
eC2/(λT )

]
+ 5λ4

[
eC2/(λT ) − 1

]
At a maximum/minimum,

dy

dλ
= 0 hence

λ5

[
− C2

λ2T
eC2/(λT )

]
+ 5λ4

[
eC2/(λT ) − 1

]
= 0

i.e.

−C2

λT
eC2/(λT ) + 5

[
eC2/(λT ) − 1

]
= 0 (on division by λ4).

If we write C2/ (λT ) as z then −zez + 5 [ez − 1] = 0 i.e.

(5− z) ez = 5 (3)

This states that there is a definite value of z for which E(λ) is a maximum. As z = C2/ (λT ), there
is a particular value of λT giving maximum E(λ).Thus, the value of λ giving maximum E(λ) occurs
for a value of T inversely proportional to λ. To find the constant of proportionality, it is necessary to
solve Equation (3).

To find a more accurate solution, it is necessary to use a numerical technique, but it can be seen
that there is a solution near z = 5. For this value of z, ez is very large ≈ 150 and the left-hand side

44 HELM (2008):
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of (3) can only equal 5 if 5− z is close to zero. On using a numerical technique, it is found that the
value of z is close to 4.965 rather than exactly 5.000.

Hence C2/ (λmaxT ) = 4.965 so λmax =
C2

4.965T
=

0.002898

T
.

This relationship is called Wein’s law:

λmax =
Cw

T

where Cw = 0.002898 m K is known as Wein’s constant.

Interpretation

At a given temperature the radiated power per unit area from a black body is dependant only on the
wavelength of the radiation. The nature of black body radiation indicates that there is a specific value
of the wavelength at which the radiation is a maximum. As an example the Sun can be approximated
by a black body at a temperature of T = 5800 K. We use Wein’s law to find the wavelength giving
maximum radiation. Here, Wein’s law can be written

λmax =
0.002898

5800
≈ 5× 10−7 m = 5000 Å (to three significant figures)

which corresponds to visible light in the yellow part of the spectrum.

HELM (2008):
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SesaCscisyh P Physics Case Study 4

Black body radiation 4

Mathematical Skills

Topic Workbook
Logarithms and Exponentials [6]
Integration [13]
Numerical Integration [31]

Introduction

A common need in engineering thermodynamics is to determine the radiation emitted by a body
heated to a particular temperature at all wavelengths or a particular wavelength such as the wave-
length of yellow light, blue light or red light. This would be important in designing a lamp for example.
The total power per unit area radiated at temperature T (in K) may be denoted by E(λ) where λ is
the wavelength of the emitted radiation. It is assumed that a perfect absorber and radiator, called a
black body, will absorb all radiation falling on it and which emits radiation at various wavelengths
λ according to the formula

E(λ) =
C1

λ5 [eC2/(λT ) − 1]
(1)

where E(λ) measures the energy (in W m−2) emitted at wavelength λ (in m) at temperature T
(in K). The values of the constants C1 and C2 are 3.742 × 10−16 W m−2 and 1.439 × 10−2 m K
respectively. This formula is known as Planck’s distribution law. Figure 4.1 shows the radiation E(λ)
as a function of wavelength λ for various values of the temperature T . Note that both scales are
plotted logarithmically. In practice, a body at a particular temperature is not a black body and its
emissions will be less intense at a particular wavelength than a black body; the power per unit area
radiated by a black body gives the ideal upper limit for the amount of energy emitted at a particular
wavelength.
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Figure 4.1

The emissive power per unit area E(λ) plotted against wavelength (logarithmically) for a black body
at temperatures of T = 100 K, 400 K, 700 K, 1500 K, 5000 K and 10000 K.
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Problem in words

Determine the total power per unit area radiated at all wavelengths by a black body at a given
temperature.

The expression (1) gives the amount of radiation at a particular wavelength λ. If this expression is
summed across all wavelengths, it will give the total amount of radiation.

Mathematical statement of problem

Calculate

Eb =

∫ ∞

0

E(λ)dλ =

∫ ∞

0

C1

λ5 [eC2/(λT ) − 1]
dλ.

Mathematical analysis

The integration can be achieved by means of the substitution U = C2/ (λT ) so that

λ = C2/ (UT ), dU = − C2

λ2T
dλ i.e. dλ = −λ

2T

C2

dU.

When λ = 0, U = ∞ and when λ = ∞, U = 0. So Eb becomes

Eb =

∫ 0

∞

C1

λ5 (eU − 1)

(
−λ

2T

C2

)
dU = −

∫ 0

∞

C1T

C2λ3 (eU − 1)
dU

=

∫ ∞

0

C1T

C2 (eU − 1)

(
UT

C2

)3

dU = T 4

∫ ∞

0

C1

(C2)4

U3

(eU − 1)
dU .

The important thing is that Eb is proportional to T 4 i.e. the total emission from a black body scales
as T 4. The constant of proportionality can be found from the remainder of the integral i.e.

C1

(C2)4

∫ ∞

0

U3

(eU − 1)
dU where

∫ ∞

0

U3

(eU − 1)
dU

can be shown by means of the polylog function to equal
π4

15
. Thus

Eb =
C1π

4

15(C2)4
T 4 = 5.67× 10−8 W m−2 × T 4 = σT 4, say

i.e.

Eb = σT 4

This relation is known as the Stefan-Boltzmann law and σ = 5.67 × 10−8 W m−2 is known as the
Stefan-Boltzmann constant.

Interpretation

You will no doubt be familiar with Newton’s law of cooling which states that bodies cool (under con-
vection) in proportion to the simple difference in temperature between the body and its surroundings.
A more realistic study would incorporate the cooling due to the radiation of energy. The analysis we
have just carried out shows that heat loss due to radiation will be proportional to the difference in
the fourth powers of temperature between the body and its surroundings.

HELM (2008):
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SesaCscisyh P Physics Case Study 5

Amplitude of a monochromatic optical wave passing through a glass plate

Mathematical Skills

Topic Workbook
Trigonometric functions [4]
Complex numbers [10]
Sum of geometric series [16]

Introduction

The laws of optical reflection and refraction are, respectively, that the angles of incidence and
reflection are equal and that the ratio of the sines of the incident and refracted angles is a constant
equal to the ratio of sound speeds in the media of interest. This ratio is the index of refraction (n).
Consider a monochromatic (i.e. single frequency) light ray with complex amplitude A propagating in
air that impinges on a glass plate of index of refraction n (see Figure 5.1). At the glass plate surface,
for example at point O, a fraction of the impinging optical wave energy is transmitted through the
glass with complex amplitude defined as At where t is the transmission coefficient which is assumed
real for the purposes of this Case Study. The remaining fraction is reflected. Because the speed of
light in glass is less than the speed of light in air, during transmission at the surface of the glass, it is
refracted toward the normal. The transmitted fraction travels to B where fractions of this fraction
are reflected and transmitted again. The fraction transmitted back into the air at B emerges as
a wave with complex amplitude A1 = At2. The fraction reflected at B travels through the glass
plate to C with complex amplitude rtA where r ≡ |r|e−iξ is the complex reflection coefficient of the
glass/air interface. This reflected fraction travels to D where a fraction of this fraction is transmitted
with complex amplitude A2 = A t2r2e−iϕ where ϕ is the phase lag due to the optical path length
difference with ray 1 (see Engineering Example 4 in 4.2). No absorption is assumed here
therefore |t|2 + |r|2 = 1.

A
α

O

ψ

A1 A2 A3

B D

C

Air

Glass plate n

Air

α

Figure 5.1: Geometry of a light ray transmitted and reflected through a glass plate
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Problem in words
Assuming that the internal faces of the glass plate have been treated to improve reflection, and that
an infinite number of rays pass through the plate, compute the total amplitude of the optical wave
passing through the plate.

Mathematical statement of problem

Compute the total amplitude Λ =
∞∑
i=1

Ai of the optical wave outgoing from the plate and show that

Λ =
At2

1− |r|2e−i(ϕ+2ξ)
. You may assume that the expression for the sum of a geometrical series of

real numbers is applicable to complex numbers.

Mathematical analysis

The objective is to find the infinite sum Λ =
∞∑
i=1

Ai of the amplitudes from the optical rays passing

through the plate. The first two terms of the series A1 and A2 are given and the following terms
involve additional factor r2e−iϕ. Consequently, the series can be expressed in terms of a general term
or rank N as

Λ =
∞∑
i=1

Ai = At2 + At2r2e−iϕ + At2r4e−2iϕ + . . .+ At2r2Ne−iNϕ + . . . (1)

Note that the optical path length difference creating the phase lag ϕ between two successive light
rays is derived in Engineering Example 4 in 4.2. Taking out the common factor of At2, the
infinite sum in Equation (1) can be rearranged to give

Λ = At2[1 + {r2e−iϕ}1 + {r2e−iϕ}2 + . . .+ {r2e−iϕ}N + . . .]. (2)

The infinite series Equation (2) can be expressed as an infinite geometric series

Λ = At2 lim
n→∞

[1 + q + q2 + . . .+ qN + . . .]. (3)

where q ≡ r2e−iϕ. Recalling from 16.1 that for q real

[1 + q+ q2 + . . .+ qN + . . .] =
1− qN

1− q
for q 6= 1, we will use the extension of this result to complex

q. We verify that the condition q 6= 1 is met in this case. Starting from the definition of q ≡ r2e−iϕ

we write |q| = |r2e−iϕ| = |r2||e−iϕ| = |r2|. Using the definition r ≡ |r|e−iϕ, |r2| = ||r|2e−2iξ| =
|r|2|e−2iξ| = |r|2 and therefore |q| = |r|2 = 1 − |t|2. This is less than 1 because the plate interior
surface is not perfectly reflecting. Consequently, |q| < 1 i.e. q 6= 1. Equation (3) can be expressed
as

Λ = At2 lim
n→∞

{
1− qN

1− q

}
. (4)

As done for series of real numbers when |q| < 1, limN→∞ q
N = 0 and Equation (4) becomes

Λ = At2
1

1− r2e−iϕ
. (5)

Using the definition of the complex reflection coefficient r ≡ |r|e−iξ, Equation (5) gives the final
result

Λ =
At2

1− |r|2e−i(ϕ+2ξ)
(6)

HELM (2008):
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Interpretation
Equation (6) is a complex expression for the amplitude of the transmitted monochromatic light.
Although complex quantities are convenient for mathematical modelling of optical (and other) waves,
they cannot be measured by instruments or perceived by the human eye. What can be observed is
the intensity defined by the square of the modulus of the complex amplitude.

50 HELM (2008):
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SesaCscisyh P Physics Case Study 6

Intensity of the interference field due to a glass plate

Mathematical Skills

Topic Workbook
Trigonometric functions [4]
Complex numbers [10]

Introduction

A monochromatic light with complex amplitude A propagates in air before impinging on a glass plate

(see Figure 6.1). In Physics Case Study 5, the total complex amplitude Λ =
∞∑
i=1

Ai of the optical

wave outgoing from the glass plate was derived as

Λ =
At2

1− |r|2e−i(ϕ+2ξ)

where t is the complex transmission coefficient and r ≡ |r|e−iξ is the complex reflection coefficient.
ξ is the phase lag due to the internal reflections and ϕ is the phase lag due to the optical path length
difference between two consecutive rays. Note that the intensity of the wave is defined as the square
of the modulus of the complex amplitude.

A
α

O

ψ

A1 A2 A3Air

Glass plate

Air

α
Ai

Figure 6.1: Geometry of a light ray transmitted and reflected through a glass plate

Problem in words
Find how the intensity of light passing through a glass plate depends on the phase lags introduced
by the plate and the transmission and reflection coefficients of the plate.

Mathematical statement of problem
Defining I as the intensity of the wave, the goal of the exercise is to evaluate the square of the
modulus of the complex amplitude expressed as I ≡ ΛΛ∗.

HELM (2008):
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Mathematical analysis

The total amplitude of the optical wave transmitted through the glass plate is given by

Λ =
At2

1− |r|2e−i(ϕ+2ξ)
. (1)

Using the properties of the complex conjugate of products and ratios of complex numbers (
10.1) the conjugate of (1) may be expressed as

Λ∗ =
A∗t2

∗

1− |r|2e+i(ϕ+2ξ)
. (2)

The intensity becomes

I ≡ ΛΛ∗ =
AA∗t2t2

∗

(1− |r|2e−i(ϕ+2ξ))(1− |r|2e+i(ϕ+2ξ))
. (3)

In 10.1 it is stated that the square of the modulus of a complex number z can be expressed as
|z|2 = zz∗. So Equation (3) becomes

I =
|A|2(tt∗)2

(1− |r|2e+i(ϕ+2ξ) − |r|2e−i(ϕ+2ξ) + |r|4)
. (4)

Taking out the common factor in the last two terms of the denominator,

I =
|A|2|t|4

1 + |r|4 − |r|2{e+i(ϕ+2ξ) + e−i(ϕ+2′ξ)}
. (5)

Using the exponential form of the cosine function cos(ϕ+2ξ) = {e−i(ϕ+2ξ)+e−i(ϕ+2ξ)}/2 as presented
in 10.3, Equation (5) leads to the final result

I =
|A2| |t|4

1 + |r|4 − 2|r|2 cos(2ξ + ϕ)
. (6)

Interpretation

Recall from Engineering Example 4 in 4.3 that ϕ depends on the angle of incidence and the
refractive index of the plate. So the transmitted light intensity depends on angle. The variation of
intensity with angle can be detected. A vertical screen placed beyond the glass plate will show a
series of interference fringes.
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SesaCscisyh P Physics Case Study 7

Propagation time difference between two light rays transmitted
through a glass plate

Mathematical Skills

Topic Workbook
Trigonometric functions [4]

Introduction

The laws of optical reflection and refraction are, respectively, that the angles of incidence and
reflection are equal and that the ratio of the sines of the incident and refracted angles is a constant
equal to the ratio of sound speeds in the media of interest. This ratio is the index of refraction (n).
Consider a light ray propagating in air that impinges on a glass plate of index of refraction n and of
thickness e at an angle α with respect to the normal (see Figure 7.1).

α
A

ψ

E

B D

C

Air

Glass plate n

Air

α

e

α
wave (I)

wave (II)

Figure 7.1: Geometry of a light ray transimitted and reflected through a glass plate

At the glass plate surface, for example at point A, a fraction of the impinging optical wave energy
is transmitted through the glass and the remaining fraction is reflected. Because the speed of light
in glass is less than the speed of light in air, during transmission at the surface of the glass, it is
refracted toward the normal at an angle ψ. The transmitted fraction travels to B where a fraction
of this fraction is reflected and transmitted again. The fraction transmitted back into the air at B
emerges as wave (I). The fraction reflected at B travels through the glass plate to C where a fraction
of this fraction is reflected back into the glass. This reflected fraction travels to D where a fraction
of this fraction is transmitted as wave (II). Note that while the ray AB is being reflected inside the
glass plate at B and C, the fraction transmitted at B will have travelled the distance BE. Beyond
the glass plate, waves (I) and (II) interfere depending upon the phase difference between them. The
phase difference depends on the propagation time difference.
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Problem in words
Using the laws of optical reflection and refraction, determine the difference in propagation times
between waves (I) and (II) in terms of the thickness of the plate, the refracted angle, the speed of
light in air and the index of refraction. When interpreting your answer, identify three ray paths that
are omitted from Figure 1 and state any assumptions that you have made.

Mathematical statement of problem
Using symbols v and c to represent the speed of light in glass and air respectively, find the propagation
time difference τ between waves (I) and (II) from τ = (BC + CD)/v − BE/c in terms of e, n, c
and ψ.

Mathematical analysis
The propagation time difference between waves (I) and (II) is given by

τ = (BC + CD)/v −BE/c. (1)

As a result of the law of reflection, the angle between the normal to the plate surface and AB is
equal to that between the normal and BC. The same is true of the angles to the normal at C, so
BC is equal to CD.

In terms of ψ and e

BC = CD = e/ cosψ, (2)

so

BC + CD =
2e

cosψ
. (3)

The law of refraction (a derivation is given in Engineering Example 2 in 12.2), means that the
angle between BE and the normal at B is equal to the incident angle and the transmitted rays at
B and D are parallel.

So in the right-angled triangle BED

sinα = BE/BD. (4)

Note also that, from the two right-angled halves of isosceles triangle ABC,

tanψ = BD/2e.

Replacing BD by 2e tanψ in (4) gives

BE = 2e tanψ sinα. (5)

Using the law of refraction again

sinα = n sinψ.

So it is possible to rewrite (5) as

BE = 2en tanψ sinψ

which simplifies to

BE = 2en sin2 ψ/ cosψ (6)
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Using Equations (3) and (6) in (1) gives

τ =
2e

v cosψ
− 2en sin2 ψ

c cosψ

But the index of refraction n = c/v so

τ =
2ne

c cosψ
(1− sin2 ψ).

Recall from 4.3 that cos2 ψ ≡ 1− sin2 ψ. Hence Equation (6) leads to the final result:

τ =
2ne

c
cosψ (7)

Interpretation
Ray paths missing from Figure 7.1 include reflected rays at A and D and the transmitted ray at C.
The analysis has ignored ray paths relected at the ‘sides’ of the plate. This is reasonable as long as
the plate is much wider and longer than its thickness.

The propagation time difference τ means that there is a phase difference between rays (I) and (II) that

can be expressed as ϕ =
2πcτ

λ
=

4πne cosψ

λ
where λ is the wave-length of the monochromatic light.

The concepts of phase and phase difference are introduced in 4.5 Applications of Trigonometry
to Waves. An additional phase shift ξ is due to the reflection of ray (II) at B and C. It can be shown
that the optical wave interference pattern due to the glass plate is governed by the phase lag angle
ϕ + 2ξ. Note that for a fixed incidence angle α (or ψ as the refraction law gives sinα = n sinψ),
the phase ϕ+ 2ξ is constant.
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SesaCscisyh P Physics Case Study 8

Fraunhofer diffraction through an infinitely long slit

Mathematical Skills

Topic Workbook
Trigonometric functions [4]
Complex numbers [10]
Maxima and minima [12]

Introduction

Diffraction occurs in an isotropic and homogeneous medium when light does not propagate in a
straight line. This is the case, for example, when light waves encounter holes or obstacles of size
comparable to the optical wavelength. When the optical waves may be considered as plane, which is
reasonable at sufficient distances from the source or diffracting object, the phenomenon is known as
Fraunhofer diffraction. Such diffraction affects all optical images. Even the best optical instruments
never give an image identical to the object. Light rays emitted from the source diffract when passing
through an instrument aperture and before reaching the image plane. Fraunhofer diffraction theory
predicts that the complex amplitude of a monochromatic light in the image plane is given by the
Fourier transform of the aperture transmission function.

Problem in words

Express the far-field intensity of a monochromatic light diffracted through an infinitely long slit-
aperture characterised by a uniform transmission function across its width. Give your result in terms
of the slit-width and deduce the resulting interference fringe pattern. Deduce the changes in the
fringe system as the slit-width is varied.

Mathematical statement of problem

Suppose that f(x) represents the transmission function of the slit aperture where the variable x
indicates the spatial dependence of transmission through the aperture on the axis perpendicular to
the direction of the infinite dimension of the slit. A one-dimensional function is sufficient as it is
assumed that there is no variation along the axis of the infinitely long slit. Fraunhofer Diffraction
Theory predicts that the complex optical wave amplitude F (u) in the image plane is given by the
Fourier transform of f(x) i.e. F (u) = F{f(x)}. Since the diffracted light intensity I(u) is given by
the square of the modulus of F (u), i.e. I(u) = |F (u)|2 = F (u)F (u)∗, the fringe pattern is obtained
by studying the minima and maxima of I(u).
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Mathematical analysis

Represent the slit width by 2a. The complex amplitude F (u) can be obtained as a Fourier transform
F (u) = F{f(x)} of the transmission function f(x) defined as

f(x) = 1 for − a ≤ x ≤ a, (1a)

f(x) = 0 for −∞ < x < −a and a < x <∞. (1b)

with f(x) = 1 or f(x) = 0 indicating maximum and minimum transmission respectively, correspond-
ing to a completely transparent or opaque aperture. The required Fourier transform is that of a
rectangular pulse (see Key Point 2 in 24.1). Consequently, the result

F (u) = 2a
sinua

ua
(2)

can be used. The sinc function, sin(ua)/ua in (2), is plotted in 24.1 page 8 and reproduced
below as Figure 8.1.

ua/π0 2 4 6 8− 2− 4− 6− 8

1
sin(ua)/ua

Figure 8.1: Plot of sinc function

F (u) has a maximum value of 2a when u = 0. Either side of the maximum, Figure 8.1 shows that
the sinc curve crosses the horizontal axis at ua = nπ or u = nπ/a, where n is a positive or negative
integer. As u increases, F (u) oscillates about the horizontal axis. Subsequent stationary points, at
ua = (2n+1)π/2, (|u| ≥ π/a) have successively decreasing amplitudes. Points ua = 5π/2, 9π/2 . . .
etc., are known as secondary maxima of F (u).

The intensity I(u) is obtained by taking the product of (2) with its complex conjugate. Since F (u)
is real, this is equivalent to squaring (2). The definition I(u) = F (u)F (u)∗ leads to

I(u) = 4a2

(
sinua

ua

)2

. (3)
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ua/π0 2 4 6 8− 2− 4− 6− 8

1
[sin(ua)/ua]2

Figure 8.2: Plot of square of sinc function

I(u) differs from the square of the sinc function only by the factor 4a2. For a given slit width this is
a constant. Figure 8.2, which is a plot of the square of the sinc function, shows that the intensity
I(u) is always positive and has a maximum value Imax = 4a2 when u = 0. The first intensity
minima either side of u = 0 occur for ua = ±π. Note that the secondary maxima have much smaller
amplitudes than that of the central peak.

Interpretation
The transmission function f(x) of the slit aperture depends on the single spatial variable x measured
on an axis perpendicular to the direction of the infinite dimension of the slit and no variation of the
intensity is predicted along the projection of the axis of the infinitely long slit on the image plane.
Consequently, the fringes are parallel straight lines aligned with the projection of the axis of infinite
slit length on the image plane (see Figure 8.3). The central fringe at u = 0 is bright with a maximum
intensity Imax = 4a2 while the next fringe at u = ±π/a is dark with the intensity approaching zero.
The subsequent bright fringes (secondary maxima) are much less bright than the central fringe and
their brightness decreases with distance from the central fringe.

Monochromatic
plane wave

Slit aperture

Image plane

Diffraction fringes

−a

a

x X

λD/(2a)

D

fringe width

Figure 8.3: Geometry of monochromatic light diffraction through an idealised infinite slit aperture

As the slit-width is increased or decreased, the intensity of the bright central fringe respectively
increases or decreases as the square of the slit-width. The Fourier transform variable u is assumed
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to be proportional to the fringe position X in the image plane. Therefore, as the slit-width a is
increased or decreased, the fringe spacing π/a decreases or increases accordingly. It can be shown
from diffraction theory that

u =
2πX

λD

where λ is the wavelength, D is the distance between the image and aperture planes, and X is the

position in the image plane. When ua = ±π, 2πXa

λD
= ±π so the first dark fringe positions are

given by X = ± λD

2a
. This means that longer wavelengths and longer aperture/image distances will

produce wider bright fringes.
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SesaCscisyh P Physics Case Study 9

Fraunhofer diffraction through an array of parallel infinitely
long slits

Mathematical Skills

Topic Workbook
Trigonometric functions [4]
Exponential function [6]
Complex numbers [10]
Maxima and minima [12]
Sum of geometric series [16]
Fourier transform of a rectangular pulse [24]
Shift and linearity properties of Fourier transforms [24]

Introduction

Diffraction occurs in an isotropic and homogeneous medium when light does not propagate in a
straight line. This is the case, for example, when light waves encounter holes or obstacles of size
comparable to the optical wavelength. When the optical waves may be considered as plane, which is
reasonable at sufficient distances from the source or diffracting object, the phenomenon is known as
Fraunhofer diffraction. Such diffraction affects all optical images. Even the best optical instruments
never give an image identical to the object. Light rays emitted from the source diffract when
passing through an instrument aperture and before reaching the image plane. Fraunhofer diffraction
theory predicts that at sufficient distance from the diffracting object the complex amplitude of a
monochromatic light in the image plane is given by the Fourier transform of the aperture transmission
function.

Problem in words

(i) Deduce the light intensity due to a monochromatic light diffracted through an aperture consisting
of a single infinitely long slit, characterised by a uniform transmission function across its width, when
the slit is shifted in the direction of the slit width.
(ii) Calculate the light intensity resulting from transmission through N parallel periodically spaced
infinitely long slits.

Mathematical statement of problem

(i) Suppose that f(x− l) represents the transmission function of the slit aperture where the variable
x indicates the spatial dependence of the aperture’s transparency on an axis perpendicular to the
direction of the infinite dimension of the slit and l is the distance by which the slit is shifted in the
negative x-direction. A one-dimensional function is appropriate as it is assumed that there is no
variation in the transmission along the length of the slit. The complex optical wave amplitude G(u)
in the image plane is give by the Fourier transform of f(x − l) denoted by G(u) = F{f(x − l)}.
The intensity of the diffracted light I1(u) is given by the square of the modulus of G(u)

I1(u) = |F{f(x− l)}|2 = |G(u)|2. (1)
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(ii) In the image plane, the total complex amplitude of the optical wave generated by N parallel
identical infinitely long slits with centre-to-centre spacing l is obtained by summing the amplitudes
diffracted by each aperture. The resulting light intensity can be expressed as the square of the
modulus of the Fourier transform of the sum of the amplitudes. This is represented mathematically
as

IN(u) = |F{
N∑

n=1

f(x− nl)}|2. (2)

Mathematical analysis

(i) Result of shifting the slit in the direction of the slit width
Assume that the slit width is 2a. The complex optical amplitude in the image plane G(u) can be
obtained as a Fourier transform G(u) = F{f(x− l)} of the transmission function f(x− l) defined
as

f(x− l) = 1 for − a− l ≤ x ≤ a− l, (3a)

f(x− l) = 0 for −∞ < x < −a− l and a− l < x <∞. (3b)

The maximum and minimum transmission correspond to f(x− l) = 1 and f(x− l) = 0 respectively.
Note that the function f(x − l) centred at x = l defined by (3a)-(3b) is identical to the function
f(x) centred at the origin but shifted by l in the negative x-direction.

The shift property of the Fourier transform introduced in subsection 2 of 24.2 gives the result

F{f(x− l)} = e−iulF{f(x− l)} = e−iulG(u). (4)

Combining Equations (1) and (4) gives

I1(u) = |e−iulG(u)|2. (5)

The complex exponential can be expressed in terms of trigonometric functions, so

|e−iul|2 = | cos(ul)− i sin(ul)|2.

For any complex variable, |z|2 = zz∗, so

|e−iul|2 = [cos(ul)− i sin(ul)][cos(ul) + i sin(ul)]

= cos2(ul)− i2 sin2(ul).

Since i2 = −1,

|e−iul|2 = cos2(ul) + sin2(ul) = 1.

The Fourier transform G(u) is that of a rectangular pulse, as stated in Key Point 2 in subsection 3
of 24.1, so

G(u) = 2a
sinua

ua
(6)

Consequently, the light intensity

I1(u) = 4a2

(
sinua

ua

)2

. (7)
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This is the same result as that obtained for diffraction by a slit centered at x = 0.

Interpretation
No matter where the slit is placed in the plane parallel to the image plane, the same fringe system
is obtained.

(ii) Series of infinite slits

Consider an array of N parallel infinitely long slits arranged periodically with centre-to-centre spacing
l. The resulting intensity is given by Equation (2). The linearity property of the Fourier transform
(see subsection 1 of 24.2) means that

F{
N∑

n=1

f(x− nl)} =
N∑

n=1

F{f(x− nl)} (8)

Using Equation (4) in (8) leads to

F{
N∑

n=1

f(x− nl)} =
N∑

n=1

e−iunlG(u). (9)

The function G(u) is independent of the index n, therefore it can be taken out of the sum to give

F{
N∑

n=1

f(x− nl)} = G(u)
N∑

n=1

e−iunl. (10)

Taking the common factor e−iul out of the sum leads to

N∑
n=l

e−iunl = e−iul{1 + e−iul + e−iu2l + . . . e−iu(N−1)l}. (11)

The term in brackets in (11) is a geometric series whose sum is well known (see 16.1).

Assuming that the summation formula applies to complex numbers

N∑
n=l

e−iunl = e−iul 1− [e−iul]N

1− e−iul
. (12)

Using (12) and (10) in (2) gives an expression for the light intensity

IN(u) =

∣∣∣∣G(u)e−iul 1− e−iuNl

1− e−iul

∣∣∣∣2 . (13)

Recalling that the modulus of a product is the same as the product of the moduli, (13) becomes

IN(u) = |G(u)|2
∣∣e−iul

∣∣2 ∣∣∣∣1− e−iuNl

1− e−iul

∣∣∣∣2 . (14)

Using |e−iul|2 = 1 in (14) leads to

IN(u) = I1(u)

∣∣∣∣1− e−iuNl

1− e−iul

∣∣∣∣2 . (15)

The modulus of the ratio of exponentials can be expressed as a product of the ratio and its conjugate
which gives
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∣∣∣∣1− e−iuNl

1− e−iul

∣∣∣∣2 =
(1− e−iuNl)(1− eiuNl)

(1− e−iul)(1− eiul)
=

(2− eiuNl − e−iuNl)

2− eiul − e−iul
.

Using the definition of cosine in terms of exponentials (see 10.3),∣∣∣∣1− e−iuNl

1− e−iul

∣∣∣∣2 =
1− cos(uNl)

1− cos(ul)
.

Using the identity 1− cos(2θ) ≡ 2 sin2 θ gives

∣∣∣∣1− e−iuNl

1− e−iul

∣∣∣∣2 =

sin2

(
uNl

2

)
sin2

(
ul

2

) . (16)

Using (16) and (5) in (15) leads to the final result for the intensity of the monochromatic light
diffracted through a series of N parallel infinitely long periodically spaced slits:

IN(u) = 4a2

(
sinua

ua

)2

sin

(
uNl

2

)
sin

(
ul

2

)


2

. (17)

Interpretation

The transmission function f(x) of a single slit depends on the single spatial variable x measured on
an axis perpendicular to the direction of the infinite dimension of the slit. The linearity and shift
properties of the Fourier transform show that a one-dimensional intensity function of diffracted light
is obtained with N identical periodic slits. Consequently, no variation of the intensity is predicted
along the projection of the axis of infinite slit length on the image plane. Therefore, the diffraction
interference fringes are straight lines parallel to the projection of the axis of the infinite slit on the
image plane.

In the expression for the light intensity after diffraction through the N slits, the first term

4a2

(
sinua

ua

)2

is the function corresponding to the intensity due to one slit.

The second factorsin

(
Nul

2

)
sin

(
ul

2

)


2

represents the result of interference between the waves diffracted through the N slits.

Physics Case Study 10 studies the graphical form of a normalised version of the function in (17) for
the case of two slits (N = 2). It is found that the oscillations in intensity, due to the interference
term, are bounded by an envelope proportional to the intensity due to one slit.
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SesaCscisyh P Physics Case Study 10

Interference fringes due to two parallel infinitely long slits

Mathematical Skills

Topic Workbook
Trigonometric functions [4]
Complex numbers [10]
Maxima and minima [12]
Maclaurin series expansions [16]

Introduction

Diffraction occurs in an isotropic and homogeneous medium when light does not propagate in a
straight line. This is the case for example, when light waves encounter holes or obstacles of size
comparable to the optical wavelength. When the optical waves may be considered as plane, which is
reasonable at sufficient distances from the source or diffracting object, the phenomenon is known as
Fraunhofer diffraction. Such diffraction affects all optical images. Even the best optical instruments
never give an image identical to the object. Light rays emitted from the source diffract when passing
through an instrument aperture and before reaching the image plane. Prediction of the intensity of
monochromatic light diffracted through N parallel periodically spaced slits, idealised as infinite in
one direction, is tackled in Physics Case Study 9. The resulting expression for intensity divided by
a2, 2a being the slit width, is

JN(u) = 4

(
sinua

ua

)2
(

sin
(

uNl
2

)
sin
(

ul
2

) )2

(1)

where l is the centre-to-centre spacing of the slits and u represents position on an axis perpendicular
to that of the infinite length of the slits in the image plane. The first term is called the sinc function
and corresponds to the intensity due to a single slit (see Physics Case Study 8). The second term
represents the result of interference between the N slits.

Problem in words
On the same axes, plot the components (sinc function and interference function) and the normalised
intensity along the projection of the slit-width axis on the image plane for a monochromatic light
diffracted through two 2 mm wide infinite slits with 4 mm centre-to-centre spacing. Describe the
influence of the second component (the interference component) on the intensity function.
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Mathematical statement of problem

Plot y = 4

(
sinua

ua

)2

, y =

 sin(ul)

sin

(
ul

2

)


2

and y = J2(u) = 4

(
sinua

ua

)2

×

 sin(ul)

sin

(
ul

2

)


2

on

the same graph for a = 1 mm, l = 4 mm and N = 2.

[Note that as sin(ul) ≡ 2 sin

(
ul

2

)
cos

(
ul

2

)
the expression

sin(ul)

sin

(
ul

2

) simplifies to 2 cos

(
ul

2

)
.]

Mathematical analysis

The dashed line in Figure 10.1 is a plot of the function

4

(
sinua

ua

)2

(3)

The horizontal axis in Figure 10.1 is expressed in units of π/l, (l = 4a), since this enables easier
identification of the maxima and minima. The function in (3) involves the square of a ratio of a sine
function divided its argument. It has minima (which have zero value, due to the square) when the
numerator sin(ua) = 0 and when the denominator ua 6= 0. If n is a positive or negative integer,
these conditions can be written as u = nπ/a and u 6= 0 respectively. Alternatively, since l = 4a,
the conditions can be written as ul/π = 4n (n 6= 0). This determines the minima of (3) (see Figure
10.1). The first minima are at n = ±1, i.e. ul/π = ±4. The dashed line shows a maximum at
ul/π = 0 i.e. u = 0. When both the sine function and its argument tend to zero (u = 0), the first
term in the Maclaurin series expansion of sine (see 16.5) gives the ratio [(ua)/(ua)]2 = 1. So
the maximum of (3) at ul/π = 0 has the value 4. Note that the subsequent maxima of the function
(3) are at ul/π = ±6 and the function is not periodic.

0 2 4 6 8− 2− 4− 6− 8

ul/π

J2(ul/π)

4

2

1

3

Figure 10.1: Plots of the normalised intensity J2(ul/π) and its component functions

The dotted line is a graph of the interference term sin(ul)

sin

(
ul

2

)


2

which is equivalent to 4 cos2

(
ul

2

)
(4)
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The interference function (4) is the square of the ratio of two sine functions and has minima (zeros
because of the square) when the numerator is sin(ul) = 0 and when the denominator is sin(ul/2) 6= 0.
If n is a positive or negative integer, these two conditions can be written as ul/π = n and ul/π 6= 2n.
Both conditions are satisfied by the single condition ul/π = (2n + 1). As a result of scaling the
horizontal axis in units of π/l, the zeros of (4) coincide with positive or negative odd integer values
on this axis.

When the sine functions in the numerator and denominator of (4) tend to zero simultaneously, the
first terms in their Maclaurin series expansions give the ratio [(ul)/(ul/2)]2 = 4 which means that
the maxima of (4) have the value 4. They occur when ul/π = 2n (see Figure 10.1). Note that the
function obtained from the square of the ratio of two functions with periods 2 and 4 (in units of π/l)
is a function of period 2.

The solid line is a plot of the product of the functions in (3) and (4) (i.e. Equation (2)) for a slit
semi-width a = 1 mm and a slit separation with centre-to-centre spacing l = 4 mm. For convenience
in plotting, the product has been scaled by a factor of 4. Note that the oscillations of the solid line
are like those of function (4) but are bound by the dashed line corresponding to the squared sinc
function (3). Function (3) is said to provide the envelope of the product function (2). The solid line
shows a principal maximum at u = 0 and secondary maxima around |u/π| ≈ 2 with about half the
intensity of the principal maximum. Subsequent higher order maxima show even lower magnitudes
not exceeding 1/10th of the principal maximum.

Interpretation

The diffraction interference fringes are parallel straight lines aligned with the projection of the axis of
infinite slit length on the image plane as seen in Figure 10.2. The central fringe at u = 0 is bright with
a maximum normalised intensity J2(0) = 4. Either side of the central fringe at u/π = 1, (ul/π = 4),
is dark with the intensity approaching zero. The next bright fringes have roughly half the brightness of
the central fringe and are known as secondary. Subsequent bright fringes show even lower brightness.
Note that the fringe at ul/π = 6 is brighter than those at ul/π ≈ 3.5 and ul/π ≈ 4.5 due to the
envelope function (3).

Monochromatic
plane wave

Slit aperture

Image plane

Diffraction fringes

−a
a

x X

D

!

Figure 10.2: Monochromatic light diffraction through two slits
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SesaCscisyh P Physics Case Study 11

Acceleration in polar coordinates

Mathematical Skills

Topic Workbook
Vectors [9]
Polar coordinates [17]

Introduction

Consider the general planar motion of a point P whose position is given in polar coordinates. The
point P may represent, for example, the centre of mass of a satellite in the gravitational field of a
planet.

The position of a point P can be defined by the Cartesian coordinates (x, y) of the position vector
OP = xi+ yj as shown in Figure 11.1.
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Figure 11.1: Cartesian and polar coordinate system

If i and j denote the unit vectors along the coordinate axes, by expressing the basis vector set (i, j) in

terms of the set (r̂, θ̂) using trigonometric relations, the components (vr, vθ) of velocity v = vrr̂+vθθ̂
can be related to the components (vx, vy) of v = vxi+ vyj expressed in terms of (i, j).

Problem in words
Express the radial and angular components of the velocity and acceleration in polar coordinates.

Mathematical statement of problem
The Cartesian coordinates can be expressed in terms of the polar coordinates (r, θ) as

x = r cos θ (1)

and

y = r sin θ. (2)

The components (vx, vy) of velocity v = vxi + vyj in the frame (i, j) are derived from the time

derivatives of (1) and (2).
di

dt
= 0 and

dj

dt
= 0 as the unit vectors along Ox and Oy are fixed

with time. The components (ax, ay) of acceleration in the frame (i, j) are obtained from the time
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derivative of v =
d

dt
(OP ), and use of expressions for (vr, vθ) leads to the components (ar, aθ) of

acceleration.

Mathematical analysis

The components (vx, vy) of velocity v are derived from the time derivative of (1) and (2) as

vx =
dx

dt
=
dr

dt
cos θ − r

dθ

dt
sin θ (3)

vy =
dy

dt
=
dr

dt
sin θ − r

dθ

dt
cos θ. (4)

The components (ax, ay) of acceleration are obtained from the time derivatives of (3) and (4),

ax =
d2x

dt2
=
d2r

dt2
cos θ − 2

dr

dt

dθ

dt
sin θ − r

(
dθ

dt

)2

cos θ − r
d2θ

dt2
sin θ (5)

ay =
d2y

dt2
=
d2r

dt2
sin θ + 2

dr

dt

dθ

dt
cos θ − r

(
dθ

dt

)2

sin θ + r
d2θ

dt2
cos θ. (6)

The components (vx, vy) of velocity v = vxi + vyj and (ax, ay) of acceleration a = axi + ayj are
expressed in terms of the polar coordinates. Since the velocity vector v is the same in both basis
sets,

vxi+ vyj = vrr̂ + vθθ̂. (7)

Use of known expresions for the basis vector (i, j) in terms of the basis vectors (r̂, θ̂) leads to
expressions for (vr, vθ) in terms of the polar coordinates.

Projection of the basis vectors (i, j) onto the basis vectors (r̂, θ̂) leads to (see Figure 11.2)

i = cos θr̂ − sin θθ̂ (8)

j = sin θr̂ + cos θθ̂ (9)
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Figure 11.2: Projections of the Cartesian basis set onto the polar basis set

68 HELM (2008):
Workbook 47: Mathematics and Physics Miscellany



®

Equation (7) together with (8) and (9) give

vx(cos θr̂ − sin θθ̂) + vy(sin θr̂ + cos θθ̂) = vrr̂ + vθθ̂. (10)

The basis vectors (r̂, θ̂) have been chosen to be independent, therefore (10) leads to the two equations,

vr = vx cos θ + vy sin θ (11)

vθ = −vx sin θ + vy cos θ. (12)

Using (3) and (4) in (11) and (12) gives

vr =
dr

dt
(13)

vθ = r
dθ

dt
(14)

Following the same method for the components (ar, aθ) of the acceleration,
the equation a = axi+ ayj = arr̂ + aθθ̂ allows us to write

ar = ax cos θ + ay sin θ (15)

aθ = −ax sin θ + ay cos θ. (16)

Using (5) and (6) in (15) and (16) leads to

ar =
d2r

dt2
− r

(
dθ

dt

)2

(17)

aθ = 2
dr

dt

dθ

dt
+ r

d2θ

dt2
. (18)

Interpretation

The angular velocity
dθ

dt
and acceleration

d2θ

dt2
are often denoted by ω and α respectively. The

component of velocity along θ̂ is rω. The component of acceleration along r̂ includes not only the

so-called radial acceleration
d2r

dt2
but also −rω2 the centripetal acceleration or the acceleration toward

the origin which is the only radial terms that is left in cases of circular motion. The acceleration along

θ̂ includes not only the term rα, but also the Coriolis acceleration 2
dr

dt
ω. These relations are useful

when applying Newton’s laws in a polar coordinate system. Engineering Case Study 13 in 48
uses this result to derive the differential equation of the motion of a satellite in the gravitational field
of a planet.
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